Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5595–5604 | Cite as

Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles

  • Jada Shanker
  • M. Buchi Suresh
  • G. Narsinga Rao
  • D. Suresh Babu
Electronic materials
  • 65 Downloads

Abstract

The NdCrO3 perovskite nanoparticles have been successfully synthesized using sol–gel auto-combustion process. Structural and morphological characterizations of the material have been performed at room temperature using XRD and SEM, respectively. Frequency- and temperature-dependent dielectric measurements have been performed in the range of 1 Hz–10 MHz and RT − 300 °C, respectively. The dielectric constant is found to be in the order of ε′ > 103 at room temperature, indicating the colossal dielectric constant behaviour. Ferroelectric phase transition temperature has increased with an increase in frequency, suggesting that the material is a relaxor ferroelectric nature. Temperature- and field-dependent magnetization measurements have been carried out in the temperature range (5–400 K) and field up to 5 T. M–T curve exhibited a diamagnetic-like behaviour in low temperature and low fields. Two magnetic transitions were found at TN1 (223 K) and TN2 (33 K) which correspond to para to weak ferromagnetic transition and Nd3+ spin ordering, respectively. Hysteresis loop noticed weak ferromagnetism.

Notes

Acknowledgements

One of the authors, Jada Shanker, would like to thank SRF-UGC-RGNF for providing financial assistance to carry out this work.

Funding

Funding was provided by University Grants Commission (Grant No. F117.1/201617/RGNF201517SCTEL27682/(SAIII/Website)).

References

  1. 1.
    Sahu JR, Serrao CR, Ray N, Waghmar UV, Rao CNR (2007) Rare earth chromites: a new family of multiferroics. J Mater Chem 17:42–44CrossRefGoogle Scholar
  2. 2.
    Ahmad I, Akhtar MJ, Younas M, Siddique M, Hasan MM (2012) Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. J Appl Phys 112:074105CrossRefGoogle Scholar
  3. 3.
    Du Y, Cheng Z, Wang X, Dou SX (2010) Structure, magnetic, and thermal properties of Nd1−xLaxCrO3 (0 ≤ x ≤ 1.0). J Appl Phys 108:093914CrossRefGoogle Scholar
  4. 4.
    Bora T, Ravi S (2015) Sign reversal of magnetization and tunable exchange bias field in NdCr1−xFexO3 (x = 0.05–0.2). J Magn Magn Mater 386:85–91CrossRefGoogle Scholar
  5. 5.
    Coskun M, Polat O, Coskun FM, Durmus Z, Çaglar M, Turut A (2018) The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv 8:4634–4648CrossRefGoogle Scholar
  6. 6.
    Shanker J, Venkataramana K, Vittal Prasad B, Vijaya Kumar R, Suresh Babu D (2018) Influence of Fe substitution on structural and electrical properties of Gd orthochromite ceramics. J Alloys Compd 732:314–327CrossRefGoogle Scholar
  7. 7.
    Shanker J, Buchi Suresh M, Saravanan P, Suresh Babu D (2018) Effects of Fe substitution on structural, electrical and magnetic properties of erbium ortho-chromite nano polycrystalline material. J Magn Magn Mater.  https://doi.org/10.1016/j.jmmm.2018.10.094 Google Scholar
  8. 8.
    Shanker J, Buchi Suresh M, Suresh Babu D (2016) Synthesis, characterization and electrical properties of NdXO3 (X = Cr, Fe) nanoparticles. Mater Today Proc 3:2091–2100CrossRefGoogle Scholar
  9. 9.
    Polat O, Durmus Z, Coskun FM, Coskun M, Turut A (2018) Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J Mater Sci 53:3544–3556.  https://doi.org/10.1007/s10853-017-1773-3 CrossRefGoogle Scholar
  10. 10.
    Yan LC, Hassan J, Hashim M, Yin WS, Khaoon TF, Jeng WY (2011) Effect of sintering temperatures on the microstructure and dielectric properties of SrTiO3. World Appl Sci J 14(7):1091–1094Google Scholar
  11. 11.
    Khasa S, Singh P, Sanghi S, Singh N, Agarwa A (2014) Structural analysis and dielectric characterization of Aurivillius type CaSrBi2Nb2O9 ceramics. J Integr Sci Technol 2(1):13–21Google Scholar
  12. 12.
    Singh NK, Kumar P, Kumar H, Rai R (2010) Structural and dielectric properties of Dy2(Ba0.5R0.5)2O7 (R = W, Mo) ceramics. Adv Mater Lett 1(1):79–82CrossRefGoogle Scholar
  13. 13.
    Sreehari Sastry S, Tanuj Kumar L, Tiong HS (2014) Dielectric studies on benzothiazole based liquid crystals at radio frequency region. Int J Innov Res Sci Eng Technol 3(3):10212–10219Google Scholar
  14. 14.
    Barik SK, Choudhary RNP, Singh AK (2011) AC impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv Mater Lett 2(6):419–424CrossRefGoogle Scholar
  15. 15.
    Mir SA, Ikram M, Sultan K, Habib Z, Kausar H, Asokan K (2015) Correlative exploration of structural, optical and electric properties of colossal dielectric Ni doped sm orthoferrites. Adv Mater Lett 6(12):1081–1087CrossRefGoogle Scholar
  16. 16.
    Shrivastav BD, Barde R, Mishra A, Phadake S (2013) Frequency and temperature dependence of dielectric properties of fish scales tissues. Res J Phys Sci 1(6):24–29Google Scholar
  17. 17.
    Sing N, Agarwal A, Sanghi S (2011) Dielectric relaxation, conductivity behavior and magnetic properties of Mg Substituted Zn–Li ferrites. Curr Appl Phys 11:783–789CrossRefGoogle Scholar
  18. 18.
    Jaya Prakash B, Rudramadevi BH, Buddhud S (2014) Analysis of ferroelectric, dielectric and magnetic properties of GdFeO3 nanoparticle. Ferroelectr Lett Sect 41:110–122CrossRefGoogle Scholar
  19. 19.
    Kleemann W, Shvartsman VV, Bedanta S, Borisov P, Tkach A, Vilarinho PM (2008) (Sr,Mn)TiO3-a magnetoelectrically coupled multiglass. J Phys: Condens Matter 20:434216Google Scholar
  20. 20.
    Prasad BV, Narsinga Rao G, Chen JW, Suresh Babu D (2011) Relaxor ferroelectric like giant permittivity in PrCrO3 semiconductor ceramics. Mater Chem Phys 126:918–921CrossRefGoogle Scholar
  21. 21.
    Miah MJ, Khan MNI, Akther Hossain AKM (2016) Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0.95Sr0.05TiO3-(1-x)BiFe0.9Gd0.1O3 relaxors. J Magn Magn Mater 401:600–611CrossRefGoogle Scholar
  22. 22.
    Dura A, Arevalo-Lopez AM, Castillo-Martınez E, Garcıa-Guaderrama M, Moran E, Cruz MP, Fernandez F, Alario-Franco MA (2010) Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J Solid State Chem 183:1863–1871CrossRefGoogle Scholar
  23. 23.
    Dashan S, Choudharya RNP, Kumar A (2014) Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J Phys Chem Solids 75:1376–1382CrossRefGoogle Scholar
  24. 24.
    Prasad NV, Chandra Sekhar M, Kumar GS (2008) Impedance spectroscopic studies on lead based perovskite materials. Ferroelectrics 366(1):55–66CrossRefGoogle Scholar
  25. 25.
    Basu S, Ramesh Babu K, Choudhary RNP (2012) Studies on the piezoelectric and magnetostrictive phase distribution in lead zirconate titanate–cobalt iron oxide composites. Mater Chem Phys 132:570–580CrossRefGoogle Scholar
  26. 26.
    Shanker J, Buchi Suresh M, Suresh Babu D (2015) Synthesis, characterization and impedance spectroscopy studies of NdFeO3 perovskite ceramics. Int J Sci Eng Res 3(7):194–197Google Scholar
  27. 27.
    Shanker J, Narsinga Rao G, Venkataramana K, Suresh Babu D (2018) Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys Lett A 382:2974–2977CrossRefGoogle Scholar
  28. 28.
    Shanker J, Narsinga Rao G, Suresh Babu D (2018) Impedance spectroscopy and permittivity investigation of NdCrO3 perovskite ceramic nanoparticles. IOP Conf Ser Mater Sci Eng 360:012004CrossRefGoogle Scholar
  29. 29.
    Shanker J, Vittal Prasad B, Buchi Suresh M, Vijaya Kumar R, Suresh Babu D (2017) Electrical properties of NdCr1−xFexO3 perovskite ceramic nanoparticles—an impedance spectroscopy studies. Mater Res Bull 94:385–398CrossRefGoogle Scholar
  30. 30.
    Su Y, Zhang J, Feng Z, Li Z, Shen Y, Cao S (2011) Magnetic properties of rare earth HoCrO3 chromites. J Rare Earths 29(11):1060–1065CrossRefGoogle Scholar
  31. 31.
    Venugopal Rao B, Vittal Prasad B, Narsinga Rao G, Chou FC, Suresh Babu D (2015) Magnetization reversal in PrCrO3. Adv Mater Res 1086:96–100CrossRefGoogle Scholar
  32. 32.
    Wang S, Huang K, Hou C, Yuan L, Xiaofeng W, Dayong L (2015) Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE = La, Pr, Nd, Sm). Dalton Trans 44:17201–17208CrossRefGoogle Scholar
  33. 33.
    Kumar P, Kar M (2014) Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater Chem Phys 148:968–977CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia
  3. 3.H&S DepartmentMarri Laxman Reddy Institute of Technology and ManagementHyderabadIndia

Personalised recommendations