Journal of Materials Science

, Volume 54, Issue 7, pp 5788–5801 | Cite as

Crystallization kinetics of the Fe40Ni40P14B6 metallic glass in an extended range of heating rates

  • S. V. VasilievEmail author
  • O. V. Kovalenko
  • K. A. Svyrydova
  • A. I. Limanovskii
  • V. I. Tkatch


The effect of heating rate (in the range of 0.083–3.333 K s−1) on the parameters of thermal stability and crystallization kinetics of the Fe40Ni40P14B6 metallic glass has been investigated by differential scanning calorimetry and X-ray diffraction. An analytical model of glass crystallization describing the homogeneous nucleation rate, the velocity of interface-limited growth, the number of crystal volume density in crystallized samples as well as the crystallization kinetics at constant rate heating is presented. A modified procedure of estimation of thermodynamic and kinetic parameters governing the rate of crystal nucleation and growth based on the use of the measured heating rate-dependent variations of the volume fraction crystallized and the average grain size is proposed. The values of the effective diffusivity have been estimated by the Kissinger-like isoconversional method accounting the contribution of both the free energy difference and the specific interfacial nucleus-melt energy changes estimated from the structural data. It has been shown for the first time that the shapes of the non-isothermal experimental kinetic crystallization curves measured at the heating rates ≤ 1.333 K s−1 are well described by the approximate analytical equation and the values of the Avrami exponent lowering from 5.5 to 2.3 with the heating rates increasing have been estimated. The evaluated ranges of the nucleation rate (1.4 × 1016–2.5 × 1017 m−3 s−1) and growth velocity of crystals (2.05 × 10−9–3.0 × 10−7 m s−1) in Fe40Ni40P14B6 glass at temperatures from 653 to 714 K are in reasonable agreement with the experimental data. Possible variations of the established eutectic crystallization mechanism revealed by changes of the Avrami exponent with the heating rate increasing are discussed.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kelton KF (1991) Crystal nucleation in liquids and glasses. In: Ehrenreich H, Turnbull D (eds) Solid state physics: advances in research and applications, vol 45. Academic Press, New York, pp 75–177Google Scholar
  2. 2.
    Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, OxfordGoogle Scholar
  3. 3.
    Fokin VM, Zanotto ED, Yuritsin NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Sol 352:2681–2714CrossRefGoogle Scholar
  4. 4.
    Kolmogorov AN (1937) Statistical theory of crystallization of metals. Bull Acad Sci USSR Ser Math 1:355–360 (in Russian) Google Scholar
  5. 5.
    Johnson WA, Mehl RE (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall 135:416–434Google Scholar
  6. 6.
    Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  7. 7.
    Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315CrossRefGoogle Scholar
  8. 8.
    Kruger P (1993) On the relation between non-isothermal and isothermal Kolmogorov–Johnson–Mehl–Avrami crystallization kinetics. J Phys Chem Solids 54:1549–1555CrossRefGoogle Scholar
  9. 9.
    Naberezhnykh VP, Tkatch VI, Limanovskii AI, Kameneva VYu (1991) The crystallization of the Fe80B20 amorphous alloy at the constant heating rate. Fiz Metall Metalloved 71:153–160 (in Russian) Google Scholar
  10. 10.
    Ruitenberg G, Woldt E, Petford-Long AK (2001) Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta 378:97–105CrossRefGoogle Scholar
  11. 11.
    Wang D, Liu Y, Zhang Y (2008) Improved analytical model for isochronal transformation kinetics. J Mater Sci 43:4876–4885. CrossRefGoogle Scholar
  12. 12.
    Blazquez JS, Conde CF, Conde A (2005) Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater 53:2305–2311CrossRefGoogle Scholar
  13. 13.
    Tkatch VI, Limanovskii AI, Kameneva VY (1997) Studies of crystallization kinetics of Fe40Ni40P14B6 and Fe80B20 metallic glasses under non-isothermal conditions. J Mater Sci 32:5669–5677. CrossRefGoogle Scholar
  14. 14.
    Gu B, Liu F, Chen Y-Z, Jiang Y-H, Ma Y-Zh (2014) Structural modification and phase transformation kinetics: crystallization of amorphous Fe40Ni40P14B6 eutectic alloy. J Mater Sci 49:842–857. CrossRefGoogle Scholar
  15. 15.
    Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state transformation kinetics: models and recipes. Int Mater Rev 52:193–212CrossRefGoogle Scholar
  16. 16.
    Popov VV, Tkatch VI, Rassolov SG, Aronin AS (2010) Effect of replacement of Ni by Co on thermal stability of Fe40Co40P14B6 metallic glass. J Non-Cryst Sol 356:1344–1348CrossRefGoogle Scholar
  17. 17.
    Morris DG (1981) Crystallization of the Metglas 2826 amorphous alloy. Acta Metall 29:1213–1220CrossRefGoogle Scholar
  18. 18.
    Tkatch VI (1998) Determination of temperature dependence of the nucleus-melt interfacial tension for Fe40Ni40P14B6 alloy. Int J Non-Equilib Process 10:339–352Google Scholar
  19. 19.
    Vasiliev SV, Tkatch VI, Aronin AS, Kovalenko OV, Rassolov SG (2018) Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass. J Alloys Compd 744:141–145CrossRefGoogle Scholar
  20. 20.
    Metglass Alloy 2826 (Code no. Ni-235) (2018) Alloy digest: data on world wide metals and alloys. ASM InternationalGoogle Scholar
  21. 21.
    Watanabe T, Scott M (1980) The crystallization of the amorphous alloy Fe40Ni40P14B6. J Mater Sci 15:1131–1139. CrossRefGoogle Scholar
  22. 22.
    Morris DG (1982) Early crystallization behaviour of an amorphous metal alloy. Scr Metall 16:585–588CrossRefGoogle Scholar
  23. 23.
    Miura H, Isa Sh (1985) Free energy changes on crystallization of amorphous (Fe1−xNix)80P14B6 alloys. In: Steeb S, Warlimont H (eds) Rapidly quenched metals. North-Holland, Amsterdam, pp 287–290CrossRefGoogle Scholar
  24. 24.
    Tiwari RS (1986) Analysis of steady state crystal nucleation in Metglas 2826. J Non-Cryst Solids 83:126–133CrossRefGoogle Scholar
  25. 25.
    Shen TD, Schwarz RB (2001) Bulk ferromagnetic glasses in the Fe–Ni–P–B system. Acta Mater 49:837–847CrossRefGoogle Scholar
  26. 26.
    Tkatch VI, Svyrydova KA, Vasiliev SV, Kovalenko OV (2017) Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients. Phys Metals Metall 118:764–772CrossRefGoogle Scholar
  27. 27.
    Ji X, Pan Y (2007) Gibbs free energy difference in metallic glass forming liquids. J Non-Cryst Sol 353:2443–2446CrossRefGoogle Scholar
  28. 28.
    Thompson CV, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 22:1855–1859CrossRefGoogle Scholar
  29. 29.
    Greer AL (1980) The use of DSC to determine the Curie temperature of metallic glasses. Thermochim Acta 42:193–222CrossRefGoogle Scholar
  30. 30.
    Khonik VA, Kitagawa K, Morii H (2000) On the determination of the crystallization activation energy of metallic glasses. J Appl Phys 87:8440–8443CrossRefGoogle Scholar
  31. 31.
    Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRefGoogle Scholar
  32. 32.
    Mittemeijer EU (1992) Analysis of the kinetic of phase transformations. J Mater Sci 27:3977–3987. CrossRefGoogle Scholar
  33. 33.
    Zanotto ED, James PF (1990) A theoretical and experimental assessment of systematic errors in nucleation experiments. J Non-Cryst Sol 124:86–90CrossRefGoogle Scholar
  34. 34.
    Kissinger HE (1956) Variation of peak temperature with heating rate. J Res Natl Inst Stand 57:217–221CrossRefGoogle Scholar
  35. 35.
    Kelton KF (1993) Numerical model for isothermal and non-isothermal crystallization of liquids and glasses. J Non-Cryst Solids 163:283–296CrossRefGoogle Scholar
  36. 36.
    Parkins WE, Dienes GJ, Brown FW (1951) Pulse-annealing for the study of relaxation processes in solids. J Appl Phys 22:1012–1019CrossRefGoogle Scholar
  37. 37.
    Pratap A, Lilly Shanker Rao T, Lad KN, Dhurandhar D (2007) Isoconversional vs. model fitting methods. A case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calor 89:399–405CrossRefGoogle Scholar
  38. 38.
    Battezzati L, Baricco M (1993) Growth of crystals from amorphous alloys. Philos Mag B 68:813–824CrossRefGoogle Scholar
  39. 39.
    Abrosimova GE, Aronin AS, Stelmukh VA (1991) Crystallization of amorphous Fe85B15 alloy above glass transition temperature. Phys Sol State 33:3570–3576 (in Russian) Google Scholar
  40. 40.
    Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high B s and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scr Mater 95:3–6CrossRefGoogle Scholar
  41. 41.
    Koshiba K, Scudino S, Kobold R, Kühn U, Greer AL, Eckert J, Pauly S (2017) Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Mater 127:416–425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.A.A. Galkin Donetsk Institute for Physics and EngineeringDonetskUkraine
  2. 2.Donbas National Academy of Engineering and ArchitectureMakeyevkaUkraine

Personalised recommendations