Journal of Materials Science

, Volume 54, Issue 6, pp 4766–4779 | Cite as

Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects

  • Denghui QianEmail author


Plane wave expansion method was applied to investigate the band gap properties of a proposed thermo-magneto-mechanical phononic crystal nanobeam with surface effects. Numerical results and further analysis demonstrate that band structure was indirectly affected by the influence of operating temperature on Young’s modulus of epoxy. Magnetic field had more effects on the band gaps of higher orders than lower orders. The influence rules of pre-stress were similar to magnetic field, but singular pre-stress appeared, which was bad for the opening of band gaps. With the increase in operating temperature or magnetic field, the value of singular pre-stress increased. In addition, the influences of surface effect and geometric parameters on band gaps were also studied in detail. Collectively, our results are expected to be helpful for the design of thermo-magneto-mechanical nanobeam-based devices.



This work was supported by the National Natural Science Foundation of China through Grant No. 11847009.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sigalas M, Kushwaha MS, Economou EN et al (2005) Classical vibrational modes in phononic lattices: theory and experiment Z für Kristallogr-Cryst Mater 220(9):765–809Google Scholar
  2. 2.
    Yan P, Vasseur JO, Djafari-Rouhani B et al (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65(8):229–291CrossRefGoogle Scholar
  3. 3.
    Thota M, Wang KW (2018) Tunable waveguiding in origami phononic structures. J Sound Vib 430:93–100CrossRefGoogle Scholar
  4. 4.
    Mohammadi S, Eftekhar AA, Hunt WD et al (2009) High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl Phys Lett 94(5):051906-051906-3CrossRefGoogle Scholar
  5. 5.
    Yang L, Yang N, Li B (2013) Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett 14(4):1734–1738CrossRefGoogle Scholar
  6. 6.
    Honarvar H, Yang L, Hussein MI (2016) Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl Phys Lett 108(26):471CrossRefGoogle Scholar
  7. 7.
    Shu H-S, Shi X-N, Li S-D et al (2014) Numerical research on dynamic stress of phononic crystal rod in longitudinal wave band gap. Int J Mod Phys B 28(32):2019CrossRefGoogle Scholar
  8. 8.
    Chuang KC, Yuan ZW, Guo YQ et al (2018) A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J Sound Vib 431:40–53CrossRefGoogle Scholar
  9. 9.
    Li HY, Wang Y, Ke MZ et al (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112(22):223501CrossRefGoogle Scholar
  10. 10.
    Qian D, Shi Z (2016) Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Phys Lett A 380(41):3319–3325CrossRefGoogle Scholar
  11. 11.
    Liu H, Lv Z (2018) Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos Struct 202:615–624CrossRefGoogle Scholar
  12. 12.
    Lv Z, Liu H (2017) Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int J Mech Sci 134:123–135CrossRefGoogle Scholar
  13. 13.
    Ma LH, Ke LL, Wang YZ et al (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn 18(4):1850060CrossRefGoogle Scholar
  14. 14.
    Gomopoulos N, Maschke D, Koh CY et al (2010) One-dimensional hypersonic phononic crystals. Nano Lett 10(3):980CrossRefGoogle Scholar
  15. 15.
    Pernot G, Stoffel M, Savic I et al (2010) Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater 9(6):491CrossRefGoogle Scholar
  16. 16.
    Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703CrossRefGoogle Scholar
  17. 17.
    Zhang S, Gao Y (2017) Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. J Phys D Appl Phys 50(44):445303CrossRefGoogle Scholar
  18. 18.
    Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448CrossRefGoogle Scholar
  19. 19.
    Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRefGoogle Scholar
  20. 20.
    Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323CrossRefGoogle Scholar
  21. 21.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRefGoogle Scholar
  22. 22.
    Lihong Y, Tao F, Liping Y et al (2017) Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model. Theor Appl Mech Lett 7(3):152–158CrossRefGoogle Scholar
  23. 23.
    Yue Y, Xu K, Zhang X et al (2018) Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Appl Math Mech (Engl Ed) 39(7):1–14Google Scholar
  24. 24.
    Fang XQ, Zhu CS, Liu JX et al (2018) Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys B Condens Matter 529:41–56CrossRefGoogle Scholar
  25. 25.
    Zhen N, Wang YS (2011) Surface effects on bandgaps of transverse waves propagating in two dimensional phononic crystals with nanosized holes. Mater Sci Forum 675–677:611–614CrossRefGoogle Scholar
  26. 26.
    Zhen N, Wang YS, Zhang C (2012) Surface/interface effect on band structures of nanosized phononic crystals. Mech Res Commun 46(4):81–89CrossRefGoogle Scholar
  27. 27.
    Liu W, Chen J, Liu Y et al (2012) Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys Lett A 376(4):605–609CrossRefGoogle Scholar
  28. 28.
    Cai B, Wei P (2013) Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech 224(11):2749–2758CrossRefGoogle Scholar
  29. 29.
    Ding R, Su X, Zhang J et al (2014) Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material. J Appl Phys 115(7):2022–2364CrossRefGoogle Scholar
  30. 30.
    Zhang S, Shi Y, Gao Y (2015) A mechanical-magneto-thermal model for the tunability of band gaps of epoxy/Terfenol-D phononic crystals. J Appl Phys 118(3):065601-328Google Scholar
  31. 31.
    Gu C, Jin F (2016) Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J Phys D-Appl Phys 49(17):175103CrossRefGoogle Scholar
  32. 32.
    Zhang S, Shi Y, Gao Y (2017) Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings. Phys Lett A 381(12):1055–1066CrossRefGoogle Scholar
  33. 33.
    Qian D (2018) Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. J Appl Phys 124(5):055101-1-055101-9CrossRefGoogle Scholar
  34. 34.
    Aharoni A (1998) Demagnetizing factors for rectangular ferromagnetic prisms. J Appl Phys 83(6):3432–3434CrossRefGoogle Scholar
  35. 35.
    Liu Y, Xu A, Ning R (1999) Study of temperature and mechanical properties and constitutive equation for modified BMI/DPA and CTBN toughened epoxy. J Aeronaut Mater 3(1):44–51Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Province Key Laboratory of Structure Engineering, College of Civil EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations