Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 4754–4765 | Cite as

Deformation under combined compression and shear: a new kinematic solution

  • Shahin KhoddamEmail author
Computation
  • 77 Downloads

Abstract

The conventional model of compression test, cylindrical profile model (CPM), ignores shearing deformation in the sample and yields an unrealistic solution. This article presents a new kinematic model and a closed-form solution for barrelled compression test. This model, exponential profile model (EPM), accounts for shear deformation in the test sample and provides a foundation to develop a detailed constitutive framework. To benchmark EPM, example solutions of the test are performed using a finite element model. The example results are compared with those of CPM. It is shown that CPM cannot evaluate the test’s real and non-uniform deformation. It is also shown that EPM’s predictions comply reasonably well with the finite element results. The importance of the presented solution can be better understood by noting that closed-form solutions of the mechanical tests are the most convenient routes to post process the raw test data and eventually to characterize the sample’s material. It is concluded that EPM is a far more reliable platform compared to CPM for meaningful interpretations of the test results.

References

  1. 1.
    Swab JJ, Meredith CS, Casem DT, Gamble WR (2017) Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. J Mater Sci 52:10073–10084.  https://doi.org/10.1007/s10853-017-1210-7 CrossRefGoogle Scholar
  2. 2.
    Zambrano OA (2018) A general perspective of Fe–Mn–Al–C steels. J Mater Sci 53:14003–14062.  https://doi.org/10.1007/s10853-018-2551-6 CrossRefGoogle Scholar
  3. 3.
    Song R, Ponge D, Raabe D (2005) Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater 53:4881–4892CrossRefGoogle Scholar
  4. 4.
    Sander J, Hufenbach J, Bleckmann M et al (2017) Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties. J Mater Sci 52:4944–4956.  https://doi.org/10.1007/s10853-016-0731-9 CrossRefGoogle Scholar
  5. 5.
    Deng GY, Lu C, Tieu AK, Su LH, Huynh NN, Liu XH (2010) Crystal plasticity investigation of friction effect on texture evolution of Al single crystal during ECAP. J Mater Sci 45:4711–4717.  https://doi.org/10.1007/s10853-010-4674-2 CrossRefGoogle Scholar
  6. 6.
    Rowe GW (1979) Elements of metalworking theory. E. Arnold, LondonGoogle Scholar
  7. 7.
    Wang W, Pan Q, Sun Y, Wang X, Li A, Song W (2018) Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al–7.82 Zn–1.96 Mg–2.35 Cu–0.11 Zr alloy. J Mater Sci 53:11728–11748.  https://doi.org/10.1007/s10853-018-2388-z CrossRefGoogle Scholar
  8. 8.
    Baskaran K, Narayanasamy R, Arunachalam S (2007) Effect of friction factor on barrelling in elliptical shaped billets during cold upset forging. J Mater Sci 42:7630–7642.  https://doi.org/10.1007/s10853-007-1900-7 CrossRefGoogle Scholar
  9. 9.
    Avitzur B (1980) Metal forming: the application of limit analysis. Marcel Dekker Inc, New YorkGoogle Scholar
  10. 10.
    Ebrahimi R, Najafizadeh A (2004) A new method for evaluation of friction in bulk metal forming. J Mater Process Technol 152:136–143CrossRefGoogle Scholar
  11. 11.
    Solhjoo S (2010) A note on “Barrel Compression Test”: a method for evaluation of friction. Comput Mater Sci 49:435–438CrossRefGoogle Scholar
  12. 12.
    Khoddam S, Hodgson PD (2017) Advancing mechanics of barrelling compression test. Mech Mater 122:1–8.  https://doi.org/10.1016/j.mechmat.2018.04.003 CrossRefGoogle Scholar
  13. 13.
    Dieter GE, Kuhn HA, Semiatin SL (2003) Handbook of workability and process design. ASM International, Metals ParkGoogle Scholar
  14. 14.
    Dusunceli N, Colak OU, Filiz C (2010) Determination of material parameters of a viscoplastic model by genetic algorithm. Mater Des 31:1250–1255CrossRefGoogle Scholar
  15. 15.
    Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  16. 16.
    Khoddam S, Hodgson PD, Bahramabadi MJ (2011) An inverse thermal–mechanical analysis of the hot torsion test for calibrating the constitutive parameters. Mater Des 32:1903–1909CrossRefGoogle Scholar
  17. 17.
    Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Khoddam S (1997) Mechanical Engineering, Monash University, MelbourneGoogle Scholar
  19. 19.
    Lin YC, Liu Y-X, Chen M-S, Huang M-H, Ma X, Long Z-L (2016) Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model. Mater Des 99:107–114.  https://doi.org/10.1016/j.matdes.2016.03.050 CrossRefGoogle Scholar
  20. 20.
    Baral P, Laurent-Brocq M, Guillonneau G, Bergheau J-M, Loubet J-L, Kermouche G (2018) In situ characterization of AA1050 recrystallization kinetics using high temperature nanoindentation testing. Mater Des 152:22–29.  https://doi.org/10.1016/j.matdes.2018.04.053 CrossRefGoogle Scholar
  21. 21.
    Dehghan-Manshadi A, Hodgson PD (2008) Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite. J Mater Sci 43:6272–6286.  https://doi.org/10.1007/s10853-008-2907-4 CrossRefGoogle Scholar
  22. 22.
    Molaei S, Ebrahimi R, Abbasi Z (2016) Upper bound analysis of barrel compression test using a new velocity field. Iran J Sci Technol Trans Mech Eng 40:1–10CrossRefGoogle Scholar
  23. 23.
    Wu Y, Dong X (2016) An upper bound model with continuous velocity field for strain inhomogeneity analysis in radial forging process. Int J Mech Sci 115–116:385–391.  https://doi.org/10.1016/j.ijmecsci.2016.07.025 CrossRefGoogle Scholar
  24. 24.
    Khoddam S, Solhjoo S, Hodgson PD (2018) Incremental profile modeling (in press)Google Scholar
  25. 25.
    Fardi M, Ibrahim R, Hodgson PD, Khoddam S (2017) A new horizon for barreling compression test: exponential profile modeling. J Adv Mater 19:1700328.  https://doi.org/10.1002/adem.201700328 CrossRefGoogle Scholar
  26. 26.
    Crisfield MA (1991) Non-linear finite element analysis of solids and structures: volume 1, essentials, vol 1. Wiley, HobokenGoogle Scholar
  27. 27.
    Chen X, Li C, Wei XX (2016) Stress analysis of a hollow sphere compressed between two flat platens. Int J Mech Sci 118:67–76.  https://doi.org/10.1016/j.ijmecsci.2016.09.018 CrossRefGoogle Scholar
  28. 28.
    Taylor A (2009) Institute for Frontier Materials, Deakin, Waurn Ponds Campus (Personal Communication)Google Scholar
  29. 29.
    Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) On the importance of the choice of the parameters of the Johnson–Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model. Int J Mech Sci 122:143–155.  https://doi.org/10.1016/j.ijmecsci.2017.01.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations