Advertisement

Journal of Materials Science

, Volume 54, Issue 7, pp 5311–5320 | Cite as

Sensing properties of amperometric ppb-level NO2 sensor based on sodium ion conductor with sensing electrodes comprising different WO3 nanostructures

  • Xiaohong Zheng
  • Cheng Zhang
  • Jinfeng Xia
  • Guohong Zhou
  • Danyu Jiang
  • Shiwei Wang
  • Xin Li
  • Yibo Shen
  • Mengting Dai
  • Bing Wang
  • Qiang LiEmail author
Chemical routes to materials
  • 127 Downloads

Abstract

In this study, amperometric NO2 sensors based on Na+ superionic conductor electrolyte and sensing electrodes with different WO3 nanostructures (WO3 nanoparticles, WO3 nanosheets, and mesoporous WO3) have been fabricated and compared. Sensing properties, such as optimum test temperature, sensitivity, repeatability, and selectivity have been determined and compared. Compared with the literatures, the sensors, prepared using three different WO3 nanostructures, all showed improved sensing properties to 100–1000 ppb NO2 at low work temperatures of 100–150 °C. Among above sensors, the sensor equipped with mesoporous WO3 sensing electrode exhibited the best amperometric sensitivity characteristics and the minimum test temperature. The relationship between the sensing properties and the mesoporous structure has also been discussed. What’s more, the sensor can test ppb-level NO2 in low temperature, which makes it possible to monitor low concentrations of NO2 in the air.

Abbreviations

YSZ

Yttria-stabilized zirconia

NASICON

Na+ superionic conductor

SE

Sensing electrode

RE

Reference electrode

XRD

X-ray diffraction

TEM

Transmission electron microscopy

BET

Brunauer, Emmett and Teller

AFM

Atomic Force Microscope

DLS

Dynamic light scattering particle size analysis

Notes

Acknowledgements

This work is supported by Foundation of Science and Technology Commission of Shanghai Municipality (No. 18090503600) and Research project of Shanghai university of applied technology (XTCX2017-4).

Compliance with ethical standards

Conflict of interest

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these. There are no conflict of interest to declare.

References

  1. 1.
    Owolabi G, Odeshi A, Ragaller P, Sappok A (2017) Effects of regenerative mechanical vibration on the mechanical integrity of ceramic diesel particulate filters. J Adv Ceram 7:5–16CrossRefGoogle Scholar
  2. 2.
    Hao Z-C, Wang L, Dai L, Cui G-H, Li Y-H (2011) Investigation on impedencemetric-type NO2 sensor based on La0.75Sr0.25Mn0.5Co0.5O3-δ sensing electrode. J Inorg Mater 26:523–528CrossRefGoogle Scholar
  3. 3.
    Kuberský P, Hamáček A, Nešpůrek S et al (2013) Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens Actuators B Chem 187:546–552CrossRefGoogle Scholar
  4. 4.
    U. S. Environmental Protection Agency (2017) Air trends summary report. https://www.epa.gov/air-trends
  5. 5.
    Kuberský P, Syrový T, Hamáček A, Nešpůrek S, Syrová L (2015) Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens Actuators B Chem 209:1084–1090CrossRefGoogle Scholar
  6. 6.
    Wang L, Han B, Wang Z, Dai L, Zhou H, Li Y, Wang H (2015) Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode. Sens Actuators B Chem 207:791–800CrossRefGoogle Scholar
  7. 7.
    Yin C, Guan Y, Zhu Z, Liang X, Wang B, Diao Q et al (2013) Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate. Sens Actuators B Chem 183:474–477CrossRefGoogle Scholar
  8. 8.
    Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q et al (2016) High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens Actuators B Chem 232:523–530CrossRefGoogle Scholar
  9. 9.
    Liu S, Wang Z, Zhang Y, Zhang C, Zhang T (2015) High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens Actuators B Chem 211:318–324CrossRefGoogle Scholar
  10. 10.
    Yu L, Wei J, Luo Y, Tao Y, Lei M, Fan X et al (2014) Dependence of Al3+ on the growth mechanism of vertical standing ZnO nanowalls and their NO2 gas sensing properties. Sens Actuators B Chem 204:101–196CrossRefGoogle Scholar
  11. 11.
    Lim C, Wang W, Yang S, Lee K (2011) Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens Actuators B Chem 154:9–16CrossRefGoogle Scholar
  12. 12.
    Ippolito SJ, Kandasamy S, Kalantar-zadeh K, Wlodarski W, Galatsis K, Kiriakidis G, Katsarakis N, Suchea M (2005) Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sens Actuators B Chem 111–112:207–212CrossRefGoogle Scholar
  13. 13.
    Leonard J, Reyes N, Allen KM, Randhir K, Li L, AuYeung N et al (2015) Effects of dopant metal variation and material synthesis method on the material properties of mixed metal ferrites in Yttria stabilized zirconia for solar thermochemical fuel production. Int J Photoenergy 2015:1–10CrossRefGoogle Scholar
  14. 14.
    Liang X, Yang S, Li J, Zhang H, Diao Q, Zhao W et al (2011) Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary. Sens Actuators B Chem 158:1–8CrossRefGoogle Scholar
  15. 15.
    Mahendraprabhu K, Elumalai P (2017) Stabilized zirconia-based selective NO2 sensor using sol-gel derived Nb2O5 sensing-electrode. Sens Actuators B Chem 238:105–110CrossRefGoogle Scholar
  16. 16.
    Yoo J, Chatterjee S, Wachsman ED (2007) Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor. Sens Actuators B Chem 122:644–652CrossRefGoogle Scholar
  17. 17.
    Fuentes RO, Figueiredo FM, Marques FMB, Franco JI (2001) Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion 140:173–179CrossRefGoogle Scholar
  18. 18.
    Xie BX, Xu YW, Sun J, Jiang DY, Feng T (2014) The study of NO2 gas sensor based on NASICON. Adv Mater Res 1058:140–144CrossRefGoogle Scholar
  19. 19.
    Obata K, Matsushima S (2008) NASICON-based NO2 device attached with metal oxide and nitrite compound for the low temperature operation. Sens Actuators B Chem 130:269–276CrossRefGoogle Scholar
  20. 20.
    Öztürk S, Kılınç N, Öztürk ZZ (2013) Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J Alloy Compd 581:196–201CrossRefGoogle Scholar
  21. 21.
    Xiao B, Wang F, Zhai C, Wang P, Xiao C, Zhang M (2016) Facile synthesis of In2O3 nanoparticles for sensing properties at low detection temperature. Sens Actuators B Chem 235:251–257CrossRefGoogle Scholar
  22. 22.
    Xu H, Ju D, Li W, Gong H, Zhang J, Wang J et al (2016) Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film. Sens Actuators B Chem 224:654–660CrossRefGoogle Scholar
  23. 23.
    Wang Z, Hu M, Qin Y (2016) Solvothermal synthesis of WO3 nanocrystals with nanosheet and nanorod morphologies and the gas-sensing properties. Mater Lett 171:146–149CrossRefGoogle Scholar
  24. 24.
    Qin Y, Wang F, Shen W, Hu M (2012) Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J Alloy Compd 540:21–26CrossRefGoogle Scholar
  25. 25.
    Diao Q, Yin C, Liu Y, Li J, Gong X, Liang X, Yang S, Chen H, Lu G (2013) Mixed-potential-type NO2 sensor using stabilized zirconia and Cr2O3–WO3 nanocomposites. Sens Actuators B Chem 180:90–95CrossRefGoogle Scholar
  26. 26.
    Cheng Z, Song L, Ren X, Zheng Q, Xu J (2013) Novel lotus root slice-like self-assembled In2O3 microspheres: synthesis and NO2-sensing properties. Sens Actuators B Chem 176:258–263CrossRefGoogle Scholar
  27. 27.
    Wang J, Li X, Xia Y, Komarneni S, Chen H, Xu J et al (2016) Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor. ACS Appl Mater Interfaces 8:8600–8607CrossRefGoogle Scholar
  28. 28.
    Wu P, Sun JH, Huang YY, Gu GF, Tong DG (2012) Solution plasma synthesized nickel oxide nanoflowers: an effective NO2 sensor. Mater Lett 82:191–194CrossRefGoogle Scholar
  29. 29.
    Nicholas VA, Heyns AM, Kingon AI, Clark JB (1986) Reactions in the formation of Na3Zr2Si2PO12. J Mater Sci 21:1967–1973.  https://doi.org/10.1007/BF00547935 CrossRefGoogle Scholar
  30. 30.
    Fan J, Yu C, Wang L, Tu B, Zhao D, Sakamoto Y, Terasaki O (2001) Mesotunnels on the silica wall of ordered SBA-15 to generate three-dimensional large-pore mesoporous networks. J Am Chem Soc 123:12113–12114CrossRefGoogle Scholar
  31. 31.
    Zhu K, He H, Xie S, Zhang X, Zhou W, Jin S et al (2003) Crystalline WO3 nanowires synthesized by templating method. Chem Phys Lett 377:317–321CrossRefGoogle Scholar
  32. 32.
    Qin Y, Wang F, Shen W, Hu M (2012) Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J Alloy Compd 540:21–26CrossRefGoogle Scholar
  33. 33.
    Miura N, Ono M, Shimanoe K, Yamazoe N (1998) A compact solid-state amperometric sensor for detection of NO2 in ppb range. Sens Actuators B Chem 4:101–109CrossRefGoogle Scholar
  34. 34.
    Xie B, Jiang D, Feng T, Xia J, Nian H (2015) Performance study of amperometric sensor for detecting NO2 at ppb concentration level. Ionics 21:2647–2654CrossRefGoogle Scholar
  35. 35.
    Wu J, Zhang C, Li Q, Wu L, Jiang D, Xia J (2016) Application of TiO2 to amperometric NOx sensors based on NASICON. Solid State Ion 292:32–37CrossRefGoogle Scholar
  36. 36.
    Ono M, Shimanoe K, Miura N, Yamazoe N (2000) Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ion 136:583–588CrossRefGoogle Scholar
  37. 37.
    Miura N, Ono M, Shimanoe K, Yamazoe N (1998) A compact amperometric NO2 sensor based on Na+ conductive solid electrolyte. J Appl Electrochem 28:863–865CrossRefGoogle Scholar
  38. 38.
    Ono M, Shimanoe K, Miura N, Yamazoe N (2001) Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry. Sens Actuators B Chem 77:78–83CrossRefGoogle Scholar
  39. 39.
    Chandrasekaran G, Sundararaj A, Therese HA, Jeganathan K (2015) Ni-catalysed WO3 nanostructures grown by electron beam rapid thermal annealing for NO2 gas sensing. J Nanopart Res 17:292CrossRefGoogle Scholar
  40. 40.
    Teoh LG, Hung IM, Shieh J, Lai WH, Hon MH (2003) High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem Solid State Lett 6:G108–G111CrossRefGoogle Scholar
  41. 41.
    Malek K, Coppens M-O (2003) Knudsen self- and Fickian diffusion in rough nanoporous media. J Chem Phys 119:2801–2811CrossRefGoogle Scholar
  42. 42.
    Liu L, Deng QF, Agula B, Zhao X, Ren TZ, Yuan ZY (2011) Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chem Commun 47:8334–8336CrossRefGoogle Scholar
  43. 43.
    Santra SB, Sapoval B (1998) Interaction of ballistic particles with irregular pore walls, Knudsen diffusion, and catalytic efficiency. Phys Rev E 57:6888–6896CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai University of Applied TechnologyShanghaiPeople’s Republic of China
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations