Advertisement

Journal of Materials Science

, Volume 54, Issue 6, pp 4842–4858 | Cite as

Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage

  • Lu Lu
  • Yibing XieEmail author
Energy materials
  • 160 Downloads

Abstract

A ternary coupling material of phosphomolybdic acid cluster bridging carbon dots and polyaniline (CDs–PMo12–PANI) nanofibers is designed to improve electrochemical performance of PANI. The proton-rich PMo12 bonds with PANI via electrostatic interaction to promote the proton-doping level of PANI. The reversible multi-electron redox reactivity of PMo12 contributes to improving pseudo-capacitance of PANI. PMo12 cluster bonds with carbon dots via chemisorption interaction to achieve the immobilization of hydrosoluble PMo12. PMo12 cluster keeps a bridge connection between polyaniline chain and carbon dots. The good electric conductivity of carbon dots and the distinct bonding interface of CDs–PMo12–PANI contribute to improving rate capability and cycling stability of PANI. CDs–PMo12–PANI achieves high specific capacitance of 479 F g−1 at 1 A g−1, reasonable rate capacitance retention of 69.3% when increasing current density from 0.5 to 10 A g−1 and reasonable cycling capacitance retention of 68.1% after 1000 cycles at 5 A g−1. CDs–PMo12–PANI shows higher electrochemical performance of capacitance, rate capability and cycling stability than PANI, PMo12–PANI and CDs–PANI. All-solid-state flexible supercapacitor based on CDs–PMo12–PANI electrode exhibits high specific capacitance of 118.6 F g−1 and specific energy of 37.1 W h kg−1 at 1 A g−1. A single unit of high-performance supercapacitor can directly drive various electronic devices, indicating effective electrochemical energy storage of CDs–PMo12–PANI.

Notes

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 21373047), Graduate Innovation Program of Jiangsu Province, the Fundamental Research Funds for the Central Universities (2242018K41024) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lee I, Jeong GH, An S, Kim S-W, Yoon S (2018) Facile synthesis of 3D MnNi-layered double hydroxides (LDH)/graphene composites from directly graphites for pseudocapacitor and their electrochemical analysis. Appl Surf Sci 429:196–202Google Scholar
  2. 2.
    Zhou Y, Xie Y (2018) Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor. J Solid State Electrochem 22:2515–2529Google Scholar
  3. 3.
    Xie Y, Wang J (2018) Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte. J Sol Gel Sci Technol 86:760–772Google Scholar
  4. 4.
    Xie Y, Sun P (2018) Electrochemical performance of interspace-expanded molybdenum disulfide few-layer. J Nanopart Res 20:183Google Scholar
  5. 5.
    Wang R, Sui Y, Huang S, Pu Y, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535Google Scholar
  6. 6.
    Xie Y, Tian F (2017) Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor. Mater Sci Eng B 215:64–70Google Scholar
  7. 7.
    Xie Y, Gao R (2017) Electrochemical capacitance of titanium nitride modified lithium titanate nanotube array. J Alloys Compd 725:1–13Google Scholar
  8. 8.
    Giri S, Ghosh D, Das CK (2013) In situ synthesis of cobalt doped polyaniline modified graphene composites for high performance supercapacitor electrode materials. J Electroanal Chem 697:32–45Google Scholar
  9. 9.
    Xie Y, Sha X (2018) Electrochemical cycling stability of nickel(II) coordinated polyaniline. Synth Metals 237:29–39Google Scholar
  10. 10.
    Xie Y, Zhu F (2017) Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J Solid State Electrochem 21:1675–1685Google Scholar
  11. 11.
    Lu L, Xie Y (2017) Fabrication and supercapacitor behavior of phosphomolybdic acid/polyaniline/titanium nitride core–shell nanowire array, New. J Chem 41:335–346Google Scholar
  12. 12.
    Wu G, Tan P, Wang D et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:43676Google Scholar
  13. 13.
    Wang H, Liu J, Chen Z et al (2017) Synergistic capacitive behavior between polyaniline and carbon black. Electrochim Acta 230:236–244Google Scholar
  14. 14.
    Zhou Y, Xie Y (2017) Capacitive performance of ruthenium-coordinated polypyrrole, New. J Chem 41:10312–10323Google Scholar
  15. 15.
    Xie Y, Zhou Y (2018) Enhanced electrochemical stability of CuCo bimetallic-coordinated polypyrrole. Electrochim Acta 290:419–428Google Scholar
  16. 16.
    Zhao Z, Xie Y (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources 337:54–64Google Scholar
  17. 17.
    Zeng S, Chen H, Cai F, Kang Y, Chen M, Li Q (2015) Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J Mater Chem A 3:23864–23870Google Scholar
  18. 18.
    Lu L, Xie Y, Zhao Z (2018) Improved electrochemical stability of NixCo2x(OH)(6x)/NiCo2O4 electrode material. J Alloys Compd 731:903–913Google Scholar
  19. 19.
    Wei JS, Ding H, Zhang P et al (2016) Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12:5927–5934Google Scholar
  20. 20.
    Zhu Y, Ji X, Pan C et al (2013) A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ Sci 6:3665–3675Google Scholar
  21. 21.
    Dubal DP, Suarez-Guevara J, Tonti D, Enciso E, Gomez-Romero P (2015) A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. J Mater Chem A 3:23483–23492Google Scholar
  22. 22.
    Genovese M, Lian K (2017) Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes. J Mater Chem A 5:3939–3947Google Scholar
  23. 23.
    Ruiz V, Suarez-Guevara J, Gomez-Romero P (2012) Hybrid electrodes based on polyoxometalate–carbon materials for electrochemical supercapacitors. Electrochem Commun 24:35–38Google Scholar
  24. 24.
    Palomino P, Suarez-Guevara J, Olivares-Marín M et al (2017) Influence of texture in hybrid carbon-phosphomolybdic acid materials on their performance as electrodes in supercapacitors. Carbon 111:74–82Google Scholar
  25. 25.
    Genovese M, Foong YW, Lian K (2016) The unique properties of aqueous polyoxometalate (POM) mixtures and their role in the design of molecular coatings for electrochemical energy storage. Electrochim Acta 199:261–269Google Scholar
  26. 26.
    Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez-Romero P (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv Funct Mater 15:1125–1133Google Scholar
  27. 27.
    Xie J, Zhang Y, Han Y, Li C (2016) High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano 10:5304–5313Google Scholar
  28. 28.
    Kawasaki N, Wang H, Nakanishi R et al (2011) Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries. Angew Chem Int Ed 50:3471–3474Google Scholar
  29. 29.
    Cui Z, Guo CX, Yuan W, Li CM (2012) In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors. Phys Chem Chem Phys 14:12823–12828Google Scholar
  30. 30.
    He X, Zhang H, Zhang H, Li X, Xiao N, Qiu J (2014) Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J Mater Chem A 2:19633–19640Google Scholar
  31. 31.
    Ghosh T, Ghosh R, Basak U et al (2018) Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors. J Mater Chem 6:6476–6492Google Scholar
  32. 32.
    Zhao Z, Xie Y, Lu L (2018) Electrochemical performance of polyaniline-derivated nitrogen-doped carbon nanowires. Electrochim Acta 283:1618–1631Google Scholar
  33. 33.
    Zhao Z, Xie Y (2018) Electrochemical supercapacitor performance of boron and nitrogen codoped porous carbon nanowires. J Power Sources 400:264–276Google Scholar
  34. 34.
    Yang Y, Cui J, Zheng M et al (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382Google Scholar
  35. 35.
    Kulesza PJ, Skunik M, Baranowska B et al (2006) Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochim Acta 51:2373–2379Google Scholar
  36. 36.
    Karina Cuentas-Gallegos A, Martinez-Rosales R, Baibarac M, Gomez-Romero P, Rincon ME (2007) Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochem Commun 9:2088–2092Google Scholar
  37. 37.
    Cuentas-Gallegos AK, López-Cortina S, Brousse T et al (2015) Electrochemical study of H3PMo12 retention on Vulcan carbon grafted with NH2 and OH groups. J. Solid State Electrochem 20:67–79Google Scholar
  38. 38.
    Muñiz J, Cuentas-Gallegos AK, Robles M, Valdéz M (2016) Bond formation, electronic structure, and energy storage properties on polyoxometalate–carbon nanocomposites. Theor Chem Acc 135:92Google Scholar
  39. 39.
    Genovese M, Lian K (2015) Polyoxometalate modified inorganic-organic nanocomposite materials for energy storage applications: a review. Curr Opin Solid State Mater Sci 19:126–137Google Scholar
  40. 40.
    Kumari A, Kumar A, Sahu SK, Kumar S (2018) Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sens Actuators B Chem 254:197–205Google Scholar
  41. 41.
    Sun YP, Zhou B, Lin Y et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757Google Scholar
  42. 42.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  43. 43.
    Gogoi S, Kumar M, Mandal BB, Karak N (2015) High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos Sci Technol 118:39–46Google Scholar
  44. 44.
    Zhang J, Jiang J, Li H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4:4009–4015Google Scholar
  45. 45.
    Chen HY, Al-Oweini R, Friedl J et al (2015) A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors. Nanoscale 7:7934–7941Google Scholar
  46. 46.
    Lv L, Fan Y, Chen Q et al (2014) Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 25:235401Google Scholar
  47. 47.
    Hernandez-Cortez JG, Lopez-Salinas E, Manriquez M, Toledo JA, Cortes-Jacome MA (2012) Acid and base properties of molybdophosphoric acid supported on zirconia: characterized by IR spectroscopy, TPD and catalytic activity. Fuel 100:144–151Google Scholar
  48. 48.
    Baibarac M, Baltog I, Smaranda I, Scocioreanu M, Lefrant S (2011) Hybrid organic–inorganic materials based on poly(o-phenylenediamine) and polyoxometallate functionalized carbon nanotubes. J Mol Struct 985:211–218Google Scholar
  49. 49.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170Google Scholar
  50. 50.
    Delvaux M, Duchet J, Stavaux PY, Legras R, Demoustier-Champagne S (2000) Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules. Synth Metals 113:275–280Google Scholar
  51. 51.
    Bajwa G, Genovese M, Lian K (2013) Multilayer polyoxometalates–carbon nanotube composites for electrochemical capacitors. ECS J Solid State Sci Technol 2:M3046–M3050Google Scholar
  52. 52.
    Javed M, Abbas SM, Siddiq M, Han D, Niu L (2018) Mesoporous silica wrapped with graphene oxide-conducting PANI nanowires as a novel hybrid electrode for supercapacitor. J Phys Chem Solids 113:220–228Google Scholar
  53. 53.
    Feng E, Peng H, Zhang Z, Li J, Lei Z (2017) Polyaniline-based carbon nanospheres and redox mediator doped robust gel films lead to high performance foldable solid-state supercapacitors. New J Chem 41:9024–9032Google Scholar
  54. 54.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12Google Scholar
  55. 55.
    Hiskia A, Mylonas A, Papaconstantinou E (2001) Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem Soc Rev 30:62–69Google Scholar
  56. 56.
    Zhang Y, Lin B, Sun Y et al (2016) MoO2@Cu@C composites prepared by using polyoxometalates@metal-organic frameworks as template for all-solid-state flexible supercapacitor. Electrochim Acta 188:490–498Google Scholar
  57. 57.
    Suppes GM, Cameron CG, Freund MS (2010) A polypyrrole/phosphomolybdic acid/poly(3,4-ethylenedioxythiophene)/phosphotungstic acid asymmetric supercapacitor. J Electrochem Soc 157:A1030–A1034Google Scholar
  58. 58.
    Yang M, Choi BG, Jung SC, Han Y-K, Huh YS, Lee SB (2014) Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors. Adv Funct Mater 24:7301–7309Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations