Journal of Materials Science

, Volume 48, Issue 2, pp 625–635 | Cite as

Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries

  • Y. Y. Huang
  • X. L. Zeng
  • C. Zhou
  • P. Wu
  • D. G. TongEmail author


LiNi0.5Mn1.5O4 coated with various amounts of GaF3 were prepared and investigated as cathode materials for lithium ion batteries. The sample was characterized by X-ray diffraction, transmission electron microscopy, and energy-dispersive X-ray spectroscopy (EDX). The results indicated that the electrochemical performance of LiNi0.5Mn1.5O4 was effectively improved by the GaF3 coating. The 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 delivered a discharge capacity of 97 mAh g−1 at 20 C (3000 mA g−1), while the pristine sample only yielded 80 mAh g−1 at 10 C. Meanwhile, the 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 exhibited an obviously better cycle life than the bare sample at 60 °C, delivering a discharge capacity of 120.4 mAh g−1 after 300 cycles, 82.9 % of its initial discharge capacity, while the pristine only gave 75 mAh g−1. At 0.1 C, the self-discharge of 0.5 wt% GaF3-coated LiNi0.5Mn1.5O4 is about 3.4 %, while the pristine is about 10.2 % after a 5-day rest at room temperature. Furthermore, GaF3 coating greatly reduced the self-heating rate and improved the thermal stability of LiNi0.5Mn1.5O4. These improvements were attributed to the GaF3 layer not only increasing the electronic conductivity of the LiNi0.5Mn1.5O4 but also effectively suppressing the reaction between the LiNi0.5Mn1.5O4 and the electrolytes, which reduced the charge-transfer impedance and the dissolution of Ni and Mn during cycling.


Discharge Capacity Electrochemical Impedance Spectroscopy Cathode Material LiFePO4 Initial Discharge Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the Cultivating programme of Middle-aged backbone teachers (HG0092), the Cultivating programme for Excellent Innovation Team of Chengdu University of Technology (HY0084) and Innovative Experimental Items for College Students of Sichuan Province (SZH1106CX04).


  1. 1.
    Winter M, Brodd J (2004) Chem Rev 104:4254CrossRefGoogle Scholar
  2. 2.
    Kim MG, Cho J (2009) Adv Funct Mater 19:1Google Scholar
  3. 3.
    Menetrier M, Saadoune I, Levasseur S, Delmas C (1999) J Mater Chem 9:1135CrossRefGoogle Scholar
  4. 4.
    Cho J, Kim YJ, Park B (2001) Angew Chem Int Ed 40:3367CrossRefGoogle Scholar
  5. 5.
    Fey GTK, Yang HZ, Kumar TP, Naik SP, Chiang AT, Lee DC, Lin JR (2004) J Power Sources 132:172CrossRefGoogle Scholar
  6. 6.
    Chang WY, Choi JW, Im JC, Lee JK (2010) J Power Sources 195:320CrossRefGoogle Scholar
  7. 7.
    Zeng XL, Huang YY, Luo FL, He YB, Tong DG (2010) J Sol-Gel Sci Technol 54:139CrossRefGoogle Scholar
  8. 8.
    Padhi AK, Nanjundasawamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  9. 9.
    Xia Y, Yoshio M, Noguchi H (2006) Electrochim Acta 52:240CrossRefGoogle Scholar
  10. 10.
    Park KS, Schougaard SB, Goodenough JB (2007) Adv Mater 19:848CrossRefGoogle Scholar
  11. 11.
    Liu J, Wang J, Yan X, Zhang X, Yang G, Jalbout F, Wang R (2009) Electrochim Acta 54:5656CrossRefGoogle Scholar
  12. 12.
    Tong DG, Luo FL, Chu W, Li YL, Wu P (2010) Mater Chem Phys 124:1CrossRefGoogle Scholar
  13. 13.
    Tong DG, Li YL, Chu W, Wu P, Luo FL (2011) Dalton Trans 40:4087CrossRefGoogle Scholar
  14. 14.
    Zhang L, Xiang HF, Zhu XF, Yang WS, Wang H (2012) J Mater Sci 47:3076. doi: 10.1007/s10853-011-6139-7 CrossRefGoogle Scholar
  15. 15.
    Zhong Q, Bonakclarpour A, Zhang M, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205CrossRefGoogle Scholar
  16. 16.
    Obrovac MN, Gao Y, Dahn JR (1998) Phys Rev B 57:5728CrossRefGoogle Scholar
  17. 17.
    Ohzuku T, Brodd RJ (2007) J Power Sources 174:449CrossRefGoogle Scholar
  18. 18.
    Fergus JW (2010) J Power Sources 195:939CrossRefGoogle Scholar
  19. 19.
    Liu GQ, Wen L, Liu YM (2010) J Solid State Electrochem 14:2191CrossRefGoogle Scholar
  20. 20.
    Sun YK, Lee YS, Yoshio M, Amine K (2002) Electrochem Solid-State Lett 5:A99CrossRefGoogle Scholar
  21. 21.
    Sun YK, Yoon CS, Oh IH (2003) Electrochim Acta 48:503CrossRefGoogle Scholar
  22. 22.
    Sun YK, Lee YS, Yoshio M, Amine K (2003) J. Electrochem Soc 150:L11CrossRefGoogle Scholar
  23. 23.
    Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) J Electrochem Soc 150:A1577CrossRefGoogle Scholar
  24. 24.
    Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) J Electrochem Soc 566:187Google Scholar
  25. 25.
    Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Barrado JRR (2007) J Electrochem Soc 154:A178CrossRefGoogle Scholar
  26. 26.
    Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Electrochim Acta 52:3870CrossRefGoogle Scholar
  27. 27.
    Liu J, Manthiram A (2009) J Electrochem Soc 156:S13CrossRefGoogle Scholar
  28. 28.
    Liu J, Manthiram A (2009) Chem Mater 21:1695CrossRefGoogle Scholar
  29. 29.
    Tong DG, Luo YY, He Y, Ji XY, Cao JL, Tang LX, Tang AD, Huang KL, Lai QY (2006) Mater Sci Eng B 128:220CrossRefGoogle Scholar
  30. 30.
    Wang Y, Zaghib K, Guerfi A, Bazito FFC, Torresi RM, Dahn JR (2007) Electrochim Acta 52:6234Google Scholar
  31. 31.
    Ishihara T, Koga M, Matsumoto H, Yoshio M (2007) Electrochem Solid-State Lett 10:A74CrossRefGoogle Scholar
  32. 32.
    West WC, Whitacre JF, Leifer N, Greenbaum S, Smart M, Bugga R, Blanco M, Narayanan SR (2007) J Electrochem Soc 154:A929CrossRefGoogle Scholar
  33. 33.
    Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) J Solid State Electrochem 12:797CrossRefGoogle Scholar
  34. 34.
    Wang H, Xia H, Lai MO, Lu L (2009) Electrochem Commun 11:1539CrossRefGoogle Scholar
  35. 35.
    Kunduraci M, Al-Sharab JF, Amatucci GG (2006) Chem Mater 18:3585CrossRefGoogle Scholar
  36. 36.
    Yang TY, Zhang NQ, Lang Y, Sun KN (2011) J Alloy Compd 509:3783CrossRefGoogle Scholar
  37. 37.
    Liu J, Manthiram A (2009) J Electrochem Soc 156:A66CrossRefGoogle Scholar
  38. 38.
    Tong DG, Wang D, Chu W, Sun JH, Wu P (2010) Electrochim Acta 55:2299CrossRefGoogle Scholar
  39. 39.
    Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) J Power Sources 195:2909CrossRefGoogle Scholar
  40. 40.
    Kanamura K, Tamura H, Takehara ZI (1992) J Electroanal Chem 333:127CrossRefGoogle Scholar
  41. 41.
    Kanamura K, Tamura H, Shiraishi S, Takehara ZI (1995) J Electroanal Chem 394:49CrossRefGoogle Scholar
  42. 42.
    Kanamura K, Tamura H, Shiraishi S, Takehara ZI (1995) Electrochim Acta 40:913CrossRefGoogle Scholar
  43. 43.
    Schechter A, Aurbach D, Cohen H (1999) Langmuir 15:3334CrossRefGoogle Scholar
  44. 44.
    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Goger Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147(4):1322CrossRefGoogle Scholar
  45. 45.
    Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397CrossRefGoogle Scholar
  46. 46.
    Carlson TA (1975) Photoelectron and auger spectroscopy, appendix 3. Plenum, New YorkCrossRefGoogle Scholar
  47. 47.
    Li JH (2004) Advanced materials of batteries. Chemistry Industry Publishing House, BeijingGoogle Scholar
  48. 48.
    Wang YD, Jiang JW, Dahn JR (2007) Electrochem Commun 9:2534CrossRefGoogle Scholar
  49. 49.
    Richard MN, Dahn JR (1999) J Power Sources 79:135CrossRefGoogle Scholar
  50. 50.
    Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Cras FL, Martinet S (2008) Electrochim Acta 53:4137CrossRefGoogle Scholar
  51. 51.
    Belharouak I, Lu W, Vissers V, Amine K (2006) Electrochem Commun 8:329CrossRefGoogle Scholar
  52. 52.
    Dahn JR, Fuller EW, Obrovac M, Sacken UV (1994) Solid State Ion 69(3/4):265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Y. Y. Huang
    • 1
    • 2
  • X. L. Zeng
    • 1
    • 2
  • C. Zhou
    • 1
    • 2
  • P. Wu
    • 1
    • 2
  • D. G. Tong
    • 1
    • 2
    Email author
  1. 1.Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.Institute of Green Catalysis and Synthesis, College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina

Personalised recommendations