Journal of Materials Science

, Volume 46, Issue 24, pp 7643–7648 | Cite as

Functionalization of gold surfaces: recent developments and applications

  • Elisabet Prats-Alfonso
  • Fernando AlbericioEmail author


Gold surface chemistry is an important field of nanotechnology. The multiple uses provided by gold surfaces expand the repertoire of possible applications and highlight the need for new strategies to strengthen current research in this field. In this article, we present a brief summary of the advances and applications in the use of gold surfaces reported in 2010. Far from writing a standard review, this manuscript intends to underline some outstanding articles that mark new tendencies in this field.


PDMS Surface Enhance Raman Scattering Gold Surface Peptide Nucleic Acid Sulfonyl Chloride 



E P-A is a recipient of a predoctoral fellowship from the University of Barcelona. The laboratory work was partially supported by CICYT (CTQ2009-07758), the Generalitat de Catalunya (2009SGR 1024), the Institute for Research in Biomedicine, and the Barcelona Science Park. We thank ACS Publications for permission to use Figs. 3, 4, 5, and 7 and Elsevier for Fig. 6.


  1. 1.
    Prutton M (1994) Introduction to Surface Physics. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Christmann K, Schober O, Ertl G, Neumann MJ (1974) Chem Phys 60:4528Google Scholar
  3. 3.
    Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435CrossRefGoogle Scholar
  4. 4.
    Taniguchi N (1974) Proc Int Conf Prod Eng Tokyo 18–23Google Scholar
  5. 5.
    Drexler EK (1986) The coming era of nanotechnology. Anchor Books, New YorkGoogle Scholar
  6. 6.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103CrossRefGoogle Scholar
  7. 7.
    Zhang X, Sun G, Hovestädt M, Syritski V, Esser N, Volkmer R, Janietz S, Rappich J, Hinrichs K (2010) Electrochem Commun 12:1403CrossRefGoogle Scholar
  8. 8.
    Tanaka N, Yoshiike Y, Yoshiyama C, Kitaoka T (2010) Carbohydr Polym 82:100CrossRefGoogle Scholar
  9. 9.
    Raghavan S, Desai RA, Kwon Y, Mrksich M, Chen CS (2010) Langmuir 26:17733CrossRefGoogle Scholar
  10. 10.
    Kengne-Momo R, Jeyachandran Y, Assaf A, Esnault C, Daniel P, Pilard J, Durand M, Lagarde F, Dongo E, Thouand G (2010) Anal Bioanal Chem 398:1249CrossRefGoogle Scholar
  11. 11.
    Dubacheva GV, Dumy P, Auzely R, Schaaf P, Boulmedais F, Jierry L, Coche-Guerente L, Labbe P (2010) Soft Matter 6:3747CrossRefGoogle Scholar
  12. 12.
    Hoefling M, Iori F, Corni S, Gottschalk K-E (2010) ChemPhysChem 11:1763CrossRefGoogle Scholar
  13. 13.
    Wolny PM, Spatz JP, Richter RP (2009) Langmuir 26:1029CrossRefGoogle Scholar
  14. 14.
    González-Rodríguez D, Martínez-Díaz MV, Abel J, Perl A, Huskens J, Echegoyen L, Torres T (2010) Org Lett 12:2970CrossRefGoogle Scholar
  15. 15.
    Scheppokat AM, Gerber A, Schroven A, Meinke S, Kopitzki S, Beketow E, Thimm J, Thiem J (2010) Eur J Cell Biol 89:39CrossRefGoogle Scholar
  16. 16.
    Chandekar A, Sengupta SK, Whitten JE (2010) Appl Surf Sci 256:2742CrossRefGoogle Scholar
  17. 17.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280CrossRefGoogle Scholar
  18. 18.
    Curran JM, Stokes R, Irvine E, Graham D, Amro NA, Sanedrin RG, Jamil H, Hunt JA (2010) Lab Chip 10:1662CrossRefGoogle Scholar
  19. 19.
    Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Langmuir 25:13840CrossRefGoogle Scholar
  20. 20.
    Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896CrossRefGoogle Scholar
  21. 21.
    Gibson JD, Khanal BP, Zubarev ERJ (2007) Am Chem Soc 129:11653CrossRefGoogle Scholar
  22. 22.
    Jain PK, El-Sayed IH, El-Sayed MA (2007) Nano Today 2:18CrossRefGoogle Scholar
  23. 23.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) Nat Biotechnol 26:83CrossRefGoogle Scholar
  24. 24.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Trends Biotechnol 24:62CrossRefGoogle Scholar
  25. 25.
    Nam J-M, Stoeva SI, Mirkin CA (2004) J Am Chem Soc 126:5932CrossRefGoogle Scholar
  26. 26.
    Cheng H-W, Luo W-Q, Wen G-L, Huan S-Y, Shen G-L, Yu R-Q (2010) Analyst 135:2993CrossRefGoogle Scholar
  27. 27.
    Graham D (2010) Angew Chem Int Ed 49:9325CrossRefGoogle Scholar
  28. 28.
    Morel A-L, Volmant R-M, Méthivier C, Krafft J-M, Boujday S, Pradier C-M (2010) Colloid Surf B 81:304CrossRefGoogle Scholar
  29. 29.
    Surman DJ, Blomfield C, Roberts A, Moffitt C (2010) Microscopy Microanal 16:358Google Scholar
  30. 30.
    Snow AW, Foos EE, Coble MM, Jernigan GG, Ancona MG (2009) Analyst 134:1790CrossRefGoogle Scholar
  31. 31.
    Gehan H, Fillaud L, Felidj N, Aubard J, Lang P, Chehimi MM, Mangeney C (2009) Langmuir 26:3975CrossRefGoogle Scholar
  32. 32.
    Evrard D, Lambert F, Policar C, Balland V, Limoges B (2008) Chem Eur J 14:9286CrossRefGoogle Scholar
  33. 33.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004CrossRefGoogle Scholar
  34. 34.
    Boronat M, Corma A (2010) Dalton Trans 39:8538CrossRefGoogle Scholar
  35. 35.
    Duy J, Connell L, Eck W, Collins S, Smith R (2010) J Nanopart Res 12:2363CrossRefGoogle Scholar
  36. 36.
    Panagopoulou MA, Stergiou DV, Roussis IG, Prodromidis MI (2010) Anal Chem 82:8629CrossRefGoogle Scholar
  37. 37.
    Smith EA, Corn RM (2003) Appl Spectrosc 57:320ACrossRefGoogle Scholar
  38. 38.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  39. 39.
    Lee J, Han J (2010) Microfluid Nanofluid 9:973CrossRefGoogle Scholar
  40. 40.
    Ouellet E, Yang CWT, Lin T, Yang LL, Lagally ET (2010) Langmuir 26:11609CrossRefGoogle Scholar
  41. 41.
    Kiang C-H, Goddard WA, Beyers R, Bethune DS (1995) Carbon 33:903CrossRefGoogle Scholar
  42. 42.
    Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Nano Lett 9:3137CrossRefGoogle Scholar
  43. 43.
    Sakashita T, Miyauchi Y, Matsuda K, Kanemitsu Y (2010) Appl Phys Lett 97:063110CrossRefGoogle Scholar
  44. 44.
    Minati L, Speranza G, Torrengo S, Toniutti L, Migliaresi C, Maniglio D, Ferrari M, Chiasera A (2010) Surf Sci 604:1414CrossRefGoogle Scholar
  45. 45.
    Mrksich M (2008) ACS Nano 2:7CrossRefGoogle Scholar
  46. 46.
    Mrksich M (2008) Mater Matters 3:67Google Scholar
  47. 47.
    Gurard-Levin ZA, Kilian KA, Kim J, Bähr K, Mrksich M (2010) ACS Chem Biol 5:863CrossRefGoogle Scholar
  48. 48.
    Shabbir SH, Eisenberg JL, Mrksich M (2010) Angew Chem Int Ed 49:7706CrossRefGoogle Scholar
  49. 49.
    Benninghoven A (1994) Angew Chem Int Ed 33:1023CrossRefGoogle Scholar
  50. 50.
    Johnson GE, Lysonski M, Laskin J (2010) Anal Chem 82:5718CrossRefGoogle Scholar
  51. 51.
    Braunschweig AB, Huo F, Mirkin CA (2009) Nat Chem 1:353CrossRefGoogle Scholar
  52. 52.
    Salaita K, Wang Y, Mirkin CA (2007) Nat Nano 2:145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elisabet Prats-Alfonso
    • 1
    • 2
    • 3
  • Fernando Albericio
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute for Research in Biomedicine, Barcelona Science Park, University of BarcelonaBarcelonaSpain
  2. 2.CIBER-BBN, Barcelona Science Park, University of BarcelonaBarcelonaSpain
  3. 3.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations