Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7883–7894 | Cite as

Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites

  • S. Mahdavi
  • F. Akhlaghi
Article

Abstract

The effect of size of silicon carbide particles on the dry sliding wear properties of composites with three different sized SiC particles (19, 93, and 146 μm) has been studied. Wear behavior of Al6061/10 vol% SiC and Al6061/10 vol% SiC/5 vol% graphite composites processed by in situ powder metallurgy technique has been investigated using a pin-on-disk wear tester. The debris and wear surfaces of samples were identified using SEM. It was found that the porosity content and hardness of Al/10SiC composites decreased by 5 vol% graphite addition. The increased SiC particle size reduced the porosity, hardness, volume loss, and coefficient of friction of both types of composites. Moreover, the hybrid composites exhibited lower coefficient of friction and wear rates. The wear mechanism changed from mostly adhesive and micro-cutting in the Al/10SiC composite containing fine SiC particles to the prominently abrasive and delamination wear by increasing of SiC particle size. While the main wear mechanism for the unreinforced alloy was adhesive wear, all the hybrid composites were worn mainly by abrasion and delamination mechanisms.

Keywords

Wear Rate Wear Surface Wear Mechanism Wear Debris Hybrid Composite 

References

  1. 1.
    Natarajan N, Vijayarangan S, Rajendran I (2006) Wear 261:812CrossRefGoogle Scholar
  2. 2.
    Gurcan AB, Baker TN (1995) Wear 188:185CrossRefGoogle Scholar
  3. 3.
    Li GR, Zhao YT, Dai QX, Cheng XN, Wang HM, Chen G (2007) J Mater Sci 42:5442. doi: https://doi.org/10.1007/s10853-006-0790-4 CrossRefGoogle Scholar
  4. 4.
    Rao RN, Das S (2010) Mater Des 31:1200CrossRefGoogle Scholar
  5. 5.
    Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Tribol Int 42:1230CrossRefGoogle Scholar
  6. 6.
    Al-Rubaie KS, Goldenstein H, Biasoli de Mello JD (1999) Wear 225–229:163CrossRefGoogle Scholar
  7. 7.
    Basavarajappa S, Chandramohan G, Mukund K, Ashwin M, Prabu M (2006) J Mater Eng Perform 15:668CrossRefGoogle Scholar
  8. 8.
    Basavarajappa S, Chandramohan G, Mahadevan A, Thangavelu M, Subramanian R, Gopalakrishnan P (2007) Wear 262:1007CrossRefGoogle Scholar
  9. 9.
    Mindivan H, Kayali ES, Cimenoglu H (2008) Wear 265:645CrossRefGoogle Scholar
  10. 10.
    Canakci A (2011) J Mater Sci 46:2805. doi: https://doi.org/10.1007/s10853-010-5156-2 CrossRefGoogle Scholar
  11. 11.
    Kumar S, Balasubramanian V (2008) Wear 264:1026CrossRefGoogle Scholar
  12. 12.
    Leng J, Jiang L, Wu G, Tian S, Chen G (2009) Rare Met Mater Eng 38:1894CrossRefGoogle Scholar
  13. 13.
    Leng J, Jiang L, Zhang Q, Wu G, Sun D, Zhou Q (2008) J Mater Sci 43:6495. doi: https://doi.org/10.1007/s10853-008-2974-6 CrossRefGoogle Scholar
  14. 14.
    Ted Guo ML, Tsao CYA (2000) Compos Sci Technol 60:65CrossRefGoogle Scholar
  15. 15.
    Ramesh CS, Safiulla M (2007) Wear 263:629CrossRefGoogle Scholar
  16. 16.
    Mahdavi S, Akhlaghi F (2011) J Mater Sci 46:1502. doi: https://doi.org/10.1007/s10853-010-4954-x CrossRefGoogle Scholar
  17. 17.
    Kiourtsidis GE, Skolianos SM (2002) Wear 253:946CrossRefGoogle Scholar
  18. 18.
    Gui M, Kang SB (2001) Metall Mater Trans A 32A:2383CrossRefGoogle Scholar
  19. 19.
    Zhan Y, Zhang G (2003) J Mater Sci Lett 22:1087CrossRefGoogle Scholar
  20. 20.
    Urena A, Rams J, Campo M, Sanchez M (2009) Wear 266:1128CrossRefGoogle Scholar
  21. 21.
    Akhlaghi F, Zare Bidaki A (2009) Wear 266:37CrossRefGoogle Scholar
  22. 22.
    Akhlaghi F, Pelaseyyed SA (2004) Mater Sci Eng A 385:258CrossRefGoogle Scholar
  23. 23.
    Jun D, Yao-hui L, Si-rong Y, Wen-fang L (2004) Wear 257:930CrossRefGoogle Scholar
  24. 24.
    Akhlaghi F, Esfandiari H (2007) Mater Sci Eng A 452–453:70CrossRefGoogle Scholar
  25. 25.
    Akhlaghi F, Delshad Khatibi P (2011) Powder Metall 54(2):153CrossRefGoogle Scholar
  26. 26.
    Leon CA, Rodriguez-Ortiz G, Aguilar-Reyes EA (2009) Mater Sci Eng A 526:106CrossRefGoogle Scholar
  27. 27.
    Hafizpour HR, Simchi A, Parvizi S (2010) Adv Powder Technol 21:273CrossRefGoogle Scholar
  28. 28.
    Sivakumar K, Balakrishna-Bhat T, Ramakrishnan P (1998) J Mater Process Technol 73:268CrossRefGoogle Scholar
  29. 29.
    Archard JF (1953) J Appl Phys 24:981CrossRefGoogle Scholar
  30. 30.
    Mondal AK, Kumar S (2009) Wear 267:458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations