Journal of Materials Science

, Volume 46, Issue 24, pp 7865–7876 | Cite as

Twist-channel angular pressing: effect of the strain path on grain refinement and mechanical properties of copper

  • Radim KocichEmail author
  • Jaroslav Fiala
  • Ivo Szurman
  • Adéla Macháčková
  • Milan Mihola


Substructural characteristics of Cu (99.97%) were examined after the Twist channel angular pressing (TCAP) process carried out at ambient temperature. Grain refinement efficiency and resulting thermal stability were evaluated after three passes with respect to utilization of various strain paths. Results were obtained using light microscopy and X-ray diffraction methods; Mechanical properties of extruded materials were also tested. Thermal stability was studied after application of three annealing cycles. Based on the findings, Bc route is the most efficient strain path with respect to the grain refinement; higher speed of extrusion (10 mm/s) corresponds with suppression of the static recrystallization. Measured strength, obtained after three passes (route A), achieved values around 440 MPa homogeneously along the cross section of the extruded material. Homogeneity of deformation was also confirmed by micro-hardness tests. The grain size, determined after three passes, averaged out 1.2 μm. Application of TCAP (three passes) brought markedly homogeneous deformation throughout the processed sample in comparison with classical ECAP process.


Equal Channel Angular Pressing Strain Path High Pressure Torsion Static Recrystallization Extrude Material 



The presented results were obtained within the frame of solution of the research projects GACR 106/09/P395 and MSM 6198910013.


  1. 1.
    Ma A, Jiang J, Saito N, Shigematsu I, Yuan Y, Yang D, Nishida Y (2009) Mater Sci Eng A 513–514:122CrossRefGoogle Scholar
  2. 2.
    Munoz-Morris MA, Morfia DG (2010) Scr Mater 63:304CrossRefGoogle Scholar
  3. 3.
    Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912CrossRefGoogle Scholar
  4. 4.
    Takata N, Lee SH, Tsuji N (2009) Mater Lett 63:1757CrossRefGoogle Scholar
  5. 5.
    Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov VI (2002) Acta Mater 50:1639CrossRefGoogle Scholar
  6. 6.
    Wei KX, Wei W, Wang F, Du QB, Alexandrov IV, Hu J (2011) Mater Sci Eng A 528:1478CrossRefGoogle Scholar
  7. 7.
    Miyamoto H, Harada K, Mimaki T, Vinogradov A, Hashimoto S (2008) Corros Sci 50:1215CrossRefGoogle Scholar
  8. 8.
    Valiev RZ, Krasilnikov NA, Tsenev NK (1991) Mater Sci Eng A 35:137Google Scholar
  9. 9.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  10. 10.
    Segal VM (1995) Mater Sci Eng A 197:157CrossRefGoogle Scholar
  11. 11.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33CrossRefGoogle Scholar
  12. 12.
    Gertsman VY, Birringer R, Valiev RZ, Gleiter H (1994) Scr Metall Mater 30:229CrossRefGoogle Scholar
  13. 13.
    Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467CrossRefGoogle Scholar
  14. 14.
    Zhilyaev AP, Nurislamova GV, Kim BK, Baro MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  15. 15.
    Beygelzimer Y, Varyukhin V, Orlov D, Synkov S, Spuskanyuk A, Pashinska Y (2004) In: Zehetbauer MJ, Valiev RZ (eds) Nanomaterials by severe plastic deformation. Wiley-VCH Verlag, WeinheimGoogle Scholar
  16. 16.
    Varyutkhin VN, Beygelzimer Y, Synkov S, Orlov D (2006) Mater Sci Forum 335:503Google Scholar
  17. 17.
    Richert M, Liu Q, Hansen N (1999) Mater Sci Eng A 260:275CrossRefGoogle Scholar
  18. 18.
    Chu HS, Liu KS, Yeh JW (2000) Metall Mater Trans A 31:2587CrossRefGoogle Scholar
  19. 19.
    Wang QD, Chen YJ, Lin JB, Zhang LJ, Zhai CQ (2007) Mater Lett 61:4599CrossRefGoogle Scholar
  20. 20.
    Toth LS, Lapovok R, Hasani A, Ch Gu (2009) Scr Mater 61:1121CrossRefGoogle Scholar
  21. 21.
    Kocich R, Greger M, Kursa M, Szurman I, Macháčková A (2010) Mater Sci Eng A 527:6386CrossRefGoogle Scholar
  22. 22.
    Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115CrossRefGoogle Scholar
  23. 23.
    Sun PL, Kao PW, Chang CP (2000) Mater Sci Eng A 283:82CrossRefGoogle Scholar
  24. 24.
    Garcia-Infanta JM, Zhilyaev AP, Cepeda-Jimenez CM, Ruano OA, Carreno F (2008) Scr Mater 58:138CrossRefGoogle Scholar
  25. 25.
    Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Mater Sci Eng A 281:82CrossRefGoogle Scholar
  26. 26.
    Chakkingal U, Suriadi AB, Thomson PF (1999) Mater Sci Eng A 266:241CrossRefGoogle Scholar
  27. 27.
    Toth LS, Beausir B, Guc CF, Estrin Y, Scheerbaum N, Davies CHJ (2010) Acta Mater 58:6706CrossRefGoogle Scholar
  28. 28.
    Hoseini M, Meratian M, Toroghinejad MR, Szpunar J (2010) Mater Charact 61:1371CrossRefGoogle Scholar
  29. 29.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328CrossRefGoogle Scholar
  30. 30.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  31. 31.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143CrossRefGoogle Scholar
  32. 32.
    Oh-Ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29:2011CrossRefGoogle Scholar
  33. 33.
    Segal VM (2002) Mater Sci Eng A 338:331CrossRefGoogle Scholar
  34. 34.
    Embury JD, Poole WJ, Kohen E (1992) Scr Metall Mater 27:465CrossRefGoogle Scholar
  35. 35.
    Zhu YT, Lowe TC (2000) Mater Sci Eng A 291:46CrossRefGoogle Scholar
  36. 36.
    Li S (2009) Scr Mater 60:356CrossRefGoogle Scholar
  37. 37.
    Liang W, Bian L, Xie G, Zhang W, Wang H, Wang S (2010) Mater Sci Eng A 527:5557CrossRefGoogle Scholar
  38. 38.
    Srinivasan R (2001) Scr Mater 44:91CrossRefGoogle Scholar
  39. 39.
    Suo T, Li Y, Guo Y, Liu Y (2006) Mater Sci Eng A 432:269CrossRefGoogle Scholar
  40. 40.
    Mahallawy N, Shehata FA, Hameed M, Aal M, Kim HS (2010) Mater Sci Eng A 527:1404CrossRefGoogle Scholar
  41. 41.
    Dobatkin SV, Szpunar JA, Zhilyaev AP, Cho JY, Kuznetsov AA (2007) Mater Sci Eng A 462:132CrossRefGoogle Scholar
  42. 42.
    Beygelzimer Y, Varyukhin V, Synkov S, Orlov D (2009) Mater Sci Eng A 503:14CrossRefGoogle Scholar
  43. 43.
    Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308CrossRefGoogle Scholar
  44. 44.
    Akhmadeev NA, Kobelev NP, Mulyukov RR, Soifer YM, Valiev RZ (1993) Acta Metall Mater 41:1041CrossRefGoogle Scholar
  45. 45.
    Lebedev AB, Burenkov YA, Romanov AE, Kopylov VI, Filonenko VP, Gryaznov VG (1995) Mater Sci Eng A 203:165CrossRefGoogle Scholar
  46. 46.
    Zhang B, Shim VPW (2010) Acta Mater 58:6810CrossRefGoogle Scholar
  47. 47.
    Del Valle JA, Perez-Prado MT, Ruano OA (2003) Mater Sci Eng A 355:68CrossRefGoogle Scholar
  48. 48.
    Ion SE, Humphreys FJ, White SH (1982) Acta Metall 30:1909CrossRefGoogle Scholar
  49. 49.
    Kadri SJ, Hartwig KT (2006) Mater Sci Forum 503–504:349CrossRefGoogle Scholar
  50. 50.
    Molodova X, Gottstein G, Winning M, Hellmig RJ (2007) Mater Sci Eng A 460–461:204CrossRefGoogle Scholar
  51. 51.
    Hindelah AM, Hosemann R (1988) J Phys C Solid State Phys 21:4155CrossRefGoogle Scholar
  52. 52.
    Zei MS (1983) Phys Rev A 27:515CrossRefGoogle Scholar
  53. 53.
    Blum W, Zeng XH (2009) Acta Mater 57:1966CrossRefGoogle Scholar
  54. 54.
    Blum W, Li YJ, Durst K (2009) Acta Mater 57:5207CrossRefGoogle Scholar
  55. 55.
    Hoppel HW, Zhou ZM, Mughrabi H, Valiev RZ (2002) Philos Mag A 9:1781CrossRefGoogle Scholar
  56. 56.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Radim Kocich
    • 1
    Email author
  • Jaroslav Fiala
    • 2
  • Ivo Szurman
    • 3
  • Adéla Macháčková
    • 4
  • Milan Mihola
    • 5
  1. 1.Department of Material Forming, Faculty of Metallurgy and Materials EngineeringVŠB TU OstravaOstravaCzech Republic
  2. 2.Department of Material Engineering, Faculty of Metallurgy and Materials EngineeringVŠB TU OstravaOstravaCzech Republic
  3. 3.Department of Non Ferrous Metals-Refining and Recycling, Faculty of Metallurgy and Materials EngineeringVŠB TU OstravaOstravaCzech Republic
  4. 4.Department of Thermal Engineering, Faculty of Metallurgy and Materials EngineeringVŠB TU OstravaOstravaCzech Republic
  5. 5.Department of Robotics, Faculty of Mechanical EngineeringVŠB TU OstravaOstravaCzech Republic

Personalised recommendations