Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7839–7849 | Cite as

Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations

  • Dongdong Zhao
  • Liangcai Zhou
  • Yi Kong
  • Aijun Wang
  • Jiong Wang
  • Yingbiao Peng
  • Yong Du
  • Yifang Ouyang
  • Wenqing Zhang
Article

Abstract

First-principles calculations have been carried out to investigate the structure, stability, and finite-temperature thermodynamic properties of the key precipitates in the Al–Mg–Si alloys including β″-Mg5Si6, U1-Al2MgSi2, U2-Al4Mg4Si4, β′-Mg9Si5, and β-Mg2Si. The calculated phonon densities of states indicate that these precipitated phases are vibrationally stable. Within the framework of the quasiharmonic approach, the finite-temperature thermodynamic properties of these precipitated phases including entropy, enthalpy, and Gibbs free energy have been calculated. The heat capacities at constant pressure for these precipitates are predicted. The finite-temperature entropies of formation, enthalpies of formation, and Gibbs free energy of formation for these precipitates are also computed. The acquired thermodynamic properties are expected to be utilized for the prediction of the metastable equilibria in the Al–Mg–Si alloys.

Keywords

Precipitate Phase Helmholtz Free Energy Phonon Density Scientific Group Thermodata Europe Quasiharmonic Approximation 

Notes

Acknowledgement

The financial supports from the National Natural Science Foundation of China (NSFC) (Grant Nos. 50831007, 50801069), State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No. SKL201102SIC) and National Basic Research Program of China (2011CB610401), are acknowledged.

References

  1. 1.
    Matsuda K, Ikeno S, Sato T, Kamio A (1996) Scr Mater 34:1797CrossRefGoogle Scholar
  2. 2.
    Zandbergen HW, Andersen SJ, Jansen J (1997) Science 277:1221CrossRefGoogle Scholar
  3. 3.
    Matsuda K, Gamada H, Fujll K, Uetani Y, Sato T, Kamio A, Ikeno S (1998) Metall Mater Trans A 29:1161CrossRefGoogle Scholar
  4. 4.
    Matsuda K, Sakaguchi Y, Miyata Y, Uetani Y, Sato T, Kamio A, Ikeno S (2000) J Mater Sci 35:179. doi: https://doi.org/10.1023/A:1004769305736 CrossRefGoogle Scholar
  5. 5.
    Ravi C, Wolverton C (2004) Acta Mater 52:4213CrossRefGoogle Scholar
  6. 6.
    Andersen SJ, Marioara CD, Frøseth A, Vissers R, Zandbergen HW (2005) Mater Sci Eng A 390:127CrossRefGoogle Scholar
  7. 7.
    Andersen SJ, Marioara CD, Vissers R, Frøseth A, Zandbergen HW (2007) Mater Sci Eng A 444:157CrossRefGoogle Scholar
  8. 8.
    Frøseth AG, Høier R, Derlet PM, Andersen SJ, Marioara CD (2003) Phys Rev B 67:224106CrossRefGoogle Scholar
  9. 9.
    Van Huis MA, Chen JH, Zandbergen HW, Sluiter MHF (2006) Acta Mater 54:2945CrossRefGoogle Scholar
  10. 10.
    Van Huis MA, Chen JH, Sluiter MHF, Zandbergen HW (2007) Acta Mater 55:2183CrossRefGoogle Scholar
  11. 11.
    Vissers R, Van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) Acta Mater 55:3815CrossRefGoogle Scholar
  12. 12.
    Liu F, Guo F, Chen H, Ouyang Y, Tao X, Feng Y, Du Y (2010) Z Metallkd 101:1392Google Scholar
  13. 13.
    Liu ZK (2009) J Phase Equil Diffus 30:517CrossRefGoogle Scholar
  14. 14.
    Zhang H, Wang Y, Shang SL, Ravi C, Wolverton C, Chen LQ, Liu ZK (2010) CALPHAD 34:20CrossRefGoogle Scholar
  15. 15.
    Fultz B (2009) Prog Mater Sci 55:247CrossRefGoogle Scholar
  16. 16.
    Wang Y, Liu ZK, Chen LQ (2004) Acta Mater 52:2665CrossRefGoogle Scholar
  17. 17.
    Arroyave R, Shin D, Liu ZK (2005) Acta Mater 53:1809CrossRefGoogle Scholar
  18. 18.
    Shang SL, Wang Y, Kim D, Liu ZK (2009) Comput Mater Sci 47:1040CrossRefGoogle Scholar
  19. 19.
    Mei ZG, Shang SL, Wang Y, Liu ZK (2009) Phys Rev B 80:104116CrossRefGoogle Scholar
  20. 20.
    Zhang H, Shang SL, Wang Y, Saengdeejing A, Chen LQ, Liu ZK (2010) Acta Mater 58:4012CrossRefGoogle Scholar
  21. 21.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  23. 23.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  24. 24.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  26. 26.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  27. 27.
    Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223CrossRefGoogle Scholar
  28. 28.
    Van de Walle A (2009) CALPHAD 33:266CrossRefGoogle Scholar
  29. 29.
    Sluiter MHF, Weinert M, Kawazoe Y (1999) Phys Rev B 59:4100CrossRefGoogle Scholar
  30. 30.
    Wang Y, Wang JJ, Wang WY, Mei ZG, Shang SL, Chen LQ, Liu ZK (2010) J Phys Condens Matter 22:202201CrossRefGoogle Scholar
  31. 31.
    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Phys Rev B 73:045112CrossRefGoogle Scholar
  32. 32.
    Dinsdale AT (1991) CALPHAD 4:317CrossRefGoogle Scholar
  33. 33.
    Straumanis ME (1949) J Appl Phys 20:726CrossRefGoogle Scholar
  34. 34.
    Cooper AS (1962) Acta Crystallogr 15:578CrossRefGoogle Scholar
  35. 35.
    Dutta BN (1962) Phys Status Solidi 2:984CrossRefGoogle Scholar
  36. 36.
    Yu R, Zhu J, Ye HQ (2010) Comput Phys Commun 181:671CrossRefGoogle Scholar
  37. 37.
    Bercegeay C, Bernard S (2005) Phys Rev B 72:214101CrossRefGoogle Scholar
  38. 38.
    Nath K, Anderson AB (1988) Solid State Commun 66:277CrossRefGoogle Scholar
  39. 39.
    Ganeshan S, Shang SL, Wang Y, Liu ZK (2009) Acta Mater 57:3876CrossRefGoogle Scholar
  40. 40.
    Soma T (1981) Phys Status Solidi (b) 104:293CrossRefGoogle Scholar
  41. 41.
    Shang SL, Saengdeejing A, Mei ZG, Kim DE, Zhang H, Ganeshan S, Wang Y, Liu ZK (2010) Comput Mater Sci 48:813CrossRefGoogle Scholar
  42. 42.
    Tani J, Kido H (2008) Comput Mater Sci 42:531CrossRefGoogle Scholar
  43. 43.
    Wang H, Jin H, Chu W, Guo Y (2010) J Alloys Compd 499:68CrossRefGoogle Scholar
  44. 44.
    Mcwilliams D, Lynch DW (1963) Phys Rev 130:2248CrossRefGoogle Scholar
  45. 45.
    Buchenauer CJ, Cardona M (1971) Phys Rev 3:2504CrossRefGoogle Scholar
  46. 46.
    Baroni S, Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515CrossRefGoogle Scholar
  47. 47.
    Gerstein BC, Jelinek FJ, Habenschuss M, Shickell WD, Mullaly JR, Chung PL (1967) J Chem Phys 47:2109CrossRefGoogle Scholar
  48. 48.
    Yuan X, Sun W, Du Y, Zhao D, Yang H (2009) CALPHAD 33:673CrossRefGoogle Scholar
  49. 49.
    Kubaschewski O, Villa H (1949) Z Electrochem 53:32Google Scholar
  50. 50.
    Grjotheim K, Herstad O, Petrucci S, Skarbo R, Toguri J (1962) Rev Roum Chim 7:217Google Scholar
  51. 51.
    Ryabchikov IV, Mikulinski AS (1963) Izv Vyssh Uchebn Zaved Tsvet Met 1:95Google Scholar
  52. 52.
    Lukashenko GM, Eremenko VN (1964) Russ J Inorg Chem 9:1243Google Scholar
  53. 53.
    Mannchen W, Jacobo G (1965) Z Naturforsch 206:178CrossRefGoogle Scholar
  54. 54.
    Caulfield HJ, Hudson DE (1966) Solid State Commun 4:299CrossRefGoogle Scholar
  55. 55.
    Blachnik R, Kunze D, Schneider A (1971) Metall (Isernhagen, Germany) 25:119Google Scholar
  56. 56.
    Rao YK, Belton GR, Gokcen NA (ed) (1981) Chemical metallurgy: a tribute to carl wagner. The Metallurgical Society of AIME, New YorkGoogle Scholar
  57. 57.
    Owen EA, Preston GD (1924) Nature (Lond) 113:914Google Scholar
  58. 58.
    Feufel H, Godecke T, Lukas HL, Sommer F (1997) J Alloys Compd 247:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dongdong Zhao
    • 1
  • Liangcai Zhou
    • 1
  • Yi Kong
    • 1
  • Aijun Wang
    • 1
  • Jiong Wang
    • 1
  • Yingbiao Peng
    • 1
  • Yong Du
    • 1
  • Yifang Ouyang
    • 2
  • Wenqing Zhang
    • 3
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of PhysicsGuangxi UniversityNanningPeople’s Republic of China
  3. 3.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations