Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7822–7829 | Cite as

Study on mechanism of enhanced photocatalytic performance of N-doped TiO2/Ti photoelectrodes by theoretical and experimental methods

  • Yanjun Xin
  • Huiling Liu
  • Lei Han
Article

Abstract

Several kinds of N-doped/undoped TiO2 photoelectrodes with different nanostructures have been successfully prepared by anodization method and plasma-based ion implantation (PBII) technique. The morphology and structure of as-prepared photoelectrodes were studied by scanning electron microscopy, X-ray diffraction, and ultra violet/visible light diffuse reflectance spectra. Electronic structure and optical properties were calculated by means of first-principle. Photocatalytic (PC) and photoelectrocatalytic (PEC) performance were measured by the decomposition of terephthalic acid (TA) and Rhodamine B under xenon light illumination. Theoretical calculation results demonstrated that crystal phases have great influence on the electric and optical properties, and N-doped TiO2 photoelectrodes have isolated N2P impurity states nearby the top of the valence band. The optical properties and UV/Vis analysis confirmed that the absorption edge of N–TiO2 emerged red-shift and high photosensitivity. The discrepancy of PC and PEC performance of as-prepared TiO2 photoelectrodes were ascribed to band gap narrowing, N2p impurity states, self-semiconductor coupling effect, and long-range ordered orientation of photogenerated carries originated from applied electric field.

Keywords

TiO2 Rutile Photogenerated Electron Terephthalic Acid Nitrogen Doping 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 50978066), National Creative Research Groups of National Natural Science Foundation of China (No. 50821002) and State Key Laboratory of Urban Water Resources and Environment (No. 2010DX03).

References

  1. 1.
    Vinodgopal K, Hotchandani S, Kamat PV (1993) Phys Chem 97:9040CrossRefGoogle Scholar
  2. 2.
    Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Catal Today 58:199CrossRefGoogle Scholar
  3. 3.
    Candal RJ, Zeltner WA, Anderson MA (2000) Environ Sci Technol 34:3443CrossRefGoogle Scholar
  4. 4.
    Calvo ME, Candal RJ, Bilmes SA (2001) Environ Sci Technol 35:4132CrossRefGoogle Scholar
  5. 5.
    Li XZ, Liu HS (2005) Environ Sci Technol 39:4614CrossRefGoogle Scholar
  6. 6.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  7. 7.
    Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A Gen 285:181CrossRefGoogle Scholar
  8. 8.
    Peng HS, Huang SH, You FT, Chang JJ, Lu SZ, Cao L (2005) J Phys Chem B 109:5774CrossRefGoogle Scholar
  9. 9.
    Wu JCS, Chen CH (2004) J Photochem Photobiol A Chem 163:509CrossRefGoogle Scholar
  10. 10.
    Yu JG, Xiong JF, Cheng B, Liu SW (2005) Appl Catal B Environ 60:211CrossRefGoogle Scholar
  11. 11.
    Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A Chem 189:258CrossRefGoogle Scholar
  12. 12.
    Kanjwal MA, Barakat NAM, Sheikh FA, Kim HY (2010) J Mater Sci 45:1272. doi: https://doi.org/10.1007/s10853-009-4078-3 CrossRefGoogle Scholar
  13. 13.
    Macak JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Electrochem Commun 7:1133CrossRefGoogle Scholar
  14. 14.
    Alex S, Santhosh U, Das S (2005) J Photochem Photobiol A Chem 172:63CrossRefGoogle Scholar
  15. 15.
    Xie YB, Li XZ (2006) J Hazard Mater 138:526CrossRefGoogle Scholar
  16. 16.
    Han L, Xin YJ, Liu HL, Ma XX, Tang GZ (2010) J Hazard Mater 175:524CrossRefGoogle Scholar
  17. 17.
    Li DZ, Chen ZX, Chen YL, Li WJ, Huang HJ, He YH, Fu XZ (2008) Environ Sci Technol 42:2130CrossRefGoogle Scholar
  18. 18.
    Tessier F, Zollfrank C, Travitzky N, Windsheimer H, Zollfrank C, Conanec OM, Rocherulle J, Greil P (2009) J Mater Sci 44:6110. doi: https://doi.org/10.1007/s10853-009-3845-5 CrossRefGoogle Scholar
  19. 19.
    Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forro L, Kiwi J, Pulgarin C (2009) Appl Catal B Environ 88:398CrossRefGoogle Scholar
  20. 20.
    Kobayakawa K, Murakami Y, Sato Y (2005) J Photochem Photobiol A Chem 170:177CrossRefGoogle Scholar
  21. 21.
    Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483CrossRefGoogle Scholar
  22. 22.
    Valentin CD, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414CrossRefGoogle Scholar
  23. 23.
    Livraghi S, Paganini MC, Giamello E, Selloni A, Valentin CD, Pacchioni G (2006) J Am Chem Soc 128:15666CrossRefGoogle Scholar
  24. 24.
    Deskins NA, Dupuis M (2007) Phys Rev B 75:195212CrossRefGoogle Scholar
  25. 25.
    Labat F, Baranek P, Domain C, Minot C, Adamo C (2007) J Chem Phys 126:154703CrossRefGoogle Scholar
  26. 26.
    Yang KS, Dai Y, Huang BB, Feng YP (2010) Phys Rev B 81:033202CrossRefGoogle Scholar
  27. 27.
    Yang KS, Dai Y, Huang BB, Whangbo MH (2009) J Phys Chem C 113:2624CrossRefGoogle Scholar
  28. 28.
    Quenneville J, Ben-Nun M, Martinez TJ (2001) J Photochem Photobiol A Chem 144:229CrossRefGoogle Scholar
  29. 29.
    Tao JG, Guan LX, Pan JS, Huan CHA, Wang L, Kuo JL, Zhang Z, Chai JW, Wang SJ (2009) Appl Phys Lett 95:062505CrossRefGoogle Scholar
  30. 30.
    Finazzi E, Valentin CD, Selloni A, Pacchioni G (2007) J Phys Chem C 111:9275CrossRefGoogle Scholar
  31. 31.
    Tsetseris L (2010) Phys Rev B 81:165205CrossRefGoogle Scholar
  32. 32.
    Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Electrochem Commun 2:207CrossRefGoogle Scholar
  33. 33.
    Xiao Q, Si ZC, Zhang J, Xiao C, Tan XK (2008) J Hazard Mater 150:62CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  35. 35.
    Godby RW, Schluter M, Sham LJ (1988) Phys Rev B 37:10159CrossRefGoogle Scholar
  36. 36.
    Song XM, Wu JM, Tang MZ, Qi B, Yan M (2008) J Phys Chem C 112:19484CrossRefGoogle Scholar
  37. 37.
    Long MC, Cai WM, Wang ZP, Liu GZ (2006) Chem Phys Lett 420:71CrossRefGoogle Scholar
  38. 38.
    Lindgren T, Mwabora JM, Avendano E, Jonsson J (2003) J Phys Chem B 107:5709CrossRefGoogle Scholar
  39. 39.
    Batzill M, Morales EH, Diebold U (2006) Phys Rev Lett 96:026103CrossRefGoogle Scholar
  40. 40.
    Hirakawa T, Yawata K, Nosaka Y (2007) Appl Catal A Gen 325:105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Environmental Science and Engineering, State Key Laboratory of Urban Water Resources and Environment (SKLUWRE)Harbin Institute of TechnologyHarbinChina
  2. 2.School of Resource and EnvironmentQingdao Agricultura1 UniversityQingdaoChina
  3. 3.School of Environmental and Chemical EngineeringDalian Jiaotong UniversityDalianChina

Personalised recommendations