Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7793–7798 | Cite as

Synthesis, photoluminescence and mechanoluminescence properties of Eu3+ ions activated Ca2Gd2W3O14 phosphors

  • S. Sailaja
  • S. J. Dhoble
  • Nameeta Brahme
  • B. Sudhakar Reddy
Article

Abstract

A new series of Eu3+ ions-activated calcium gadolinium tungstate [Ca2Gd2W3O14] phosphors were synthesized by conventional solid-state reaction method. The X-ray diffraction patterns of the powder samples indicate that the Eu3+: Ca2Gd2W3O14 phosphors are of tetragonal structure. The prepared phosphors were well characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL), and mechanoluminescence (ML) spectra. PL spectra of Eu3+: Ca2Gd2W3O14 powder phosphors have shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λexci = 392 nm (7F0 → 5L6). The energy transfer from tungstate groups to europium ions has also reported. Mechanoluminescence studies of Eu3+: Ca2Gd2W3O14 phosphors have also been explained systematically.

Keywords

Gd2O3 Charge Transfer Band Field Emission Display Prepared Phosphor Lucite Plate 

Notes

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility (SAIF), IIT Chennai for extending instrumental facilities.

References

  1. 1.
    Shi Shikao, Gao Jing, Zhou Ji (2008) Opt Mater 30:1616CrossRefGoogle Scholar
  2. 2.
    Zhu Chuqiao, Xiao Siguo, Ding Jianwen, Yang Xiaoliang, Qiang Renfeng (2008) Mater Sci Eng B 150:95CrossRefGoogle Scholar
  3. 3.
    Shao Zexu, Zhang Qiren, Liu Tingyu, Chen Jianyu (2008) Nucl Instrum Methods B 266:797CrossRefGoogle Scholar
  4. 4.
    Lei Fang, Yan Bing, Chen Hao-Hong (2008) J Solid State Chem 181:2845CrossRefGoogle Scholar
  5. 5.
    Wei Qiong, Chen Donghua (2009) Opt Laser Technol 41:783CrossRefGoogle Scholar
  6. 6.
    Xia Zhiguo, Chen Daimei, Yang Min, Ying Ting (2010) J Phys Chem Solids 71:175CrossRefGoogle Scholar
  7. 7.
    Mari B, Singh KC, Sahal M, Khatkar SP, Taxak VB, Kumar M (2010) J Lumin 130:2128CrossRefGoogle Scholar
  8. 8.
    Guzik M, Tomaszewicz E, Kaczmarek SM, Cybinsca J, Fuks H (2010) J Non Cryst Solids 356:1902CrossRefGoogle Scholar
  9. 9.
    Tiwari Ashish, Khan SA, Kher RS, Mehta M, Dhoble. SJ (2011) J Lumin 131:1172CrossRefGoogle Scholar
  10. 10.
    Brahme N, Shukla M, Bisen DP, Kurrey U, Choubey A, Kher RS, Singh M (2011) J Lumin 131:965CrossRefGoogle Scholar
  11. 11.
    Chong MK, Pita K, Kam CH (2005) J Phys Chem Solids 66:213CrossRefGoogle Scholar
  12. 12.
    Qin Chuanxiang, Huang Yanlin, Chen Guoqiang, Shi Liang, Qiao Xuebin, Gan Jiuhui, Seo HyoJin (2009) Mater Lett 63:1162CrossRefGoogle Scholar
  13. 13.
    Tian Y, Chen B, Hua R, Zhong H, Cheng L, Sun J, Lu W, Wan J (2009) Physica B 404:3598CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Jiao H, Yanrong D (2011) Luminescent properties of HTP AgGd1−xW2O8:Eux3+ and AgGd1−x (W1−y MOy)2 O8:Eux3+ phosphor for white LED. J Lumin 131:861CrossRefGoogle Scholar
  15. 15.
    Cai GM, Zheng F, Yi DQ, Jin ZP, Chen XL (2010) New promising phosphors Ba3InB9O18 activated by Eu3+/Tb3+. J Lumin 130:910–916CrossRefGoogle Scholar
  16. 16.
    Bouajaj A, Ferrari M, Montagna M (1997) J Sol Gel Sci Technol 8:391Google Scholar
  17. 17.
    Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O (1992) J Mater Res 7(3):745CrossRefGoogle Scholar
  18. 18.
    Ju Z, Wei R, Gao X, Liu W, Pang C (2011) Opt Mater 33:909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Sailaja
    • 1
  • S. J. Dhoble
    • 2
  • Nameeta Brahme
    • 3
  • B. Sudhakar Reddy
    • 1
  1. 1.Department of Physics (Research Centre)S.V. Degree CollegeKadapaIndia
  2. 2.Department of PhysicsRTM Nagpur UniversityNagpurIndia
  3. 3.School of Studies in PhysicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations