Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7776–7783 | Cite as

Electronic properties of polyvinylpyrrolidone at the zinc oxide nanoparticle surface

PVP in ZnO dispersions and nanoparticulate ZnO thin films for thin film transistors
  • Simon Bubel
  • Norman Mechau
  • Roland Schmechel
Article

Abstract

We investigated the electrical effects of polyvinylpyrrolidone (PVP), used as a dispersion agent in zinc oxide (ZnO) nanodispersions. We found PVP reduces the high surface conductivity and atmospheric sensitivity. Compared with polymer free ZnO thin films, the nanoparticulate layers with PVP exhibit a smaller density of thermally active charge carriers, a reduced density of trap states, and a Fermi level shift toward the valence band, yielding improved performance, vanishing hysteresis characteristics and reduced atmospheric sensitivity in thin film transistors (TFT). In addition, we discuss the attachment of PVP to the ZnO surface.

Keywords

Thin Film Transistor Nanoparticulate Layer Indium Gallium Zinc Oxide Nanoparticulate Thin Film Active Charge Carrier 

Notes

Acknowledgements

The Dutch Polymer Institute (DPI), Netherlands is gratefully acknowledged for the financial support.

References

  1. 1.
    Ellmer K (2001) J Phys D 34(21):3097. doi: https://doi.org/10.1088/0022-3727/34/21/301 CrossRefGoogle Scholar
  2. 2.
    Wang ZL (2009) Mater Sci Eng R 64(3-4):33. doi: https://doi.org/10.1016/j.mser.2009.02.001 CrossRefGoogle Scholar
  3. 3.
    Tellier J, Kuscer D, Malic B, Cilensek J, Skarabot M, Kovac J, Goncalves G, Musevic I, Kosec M (2010) Thin Solid Films 518(18):5134. doi: https://doi.org/10.1016/j.tsf.2010.03.010 CrossRefGoogle Scholar
  4. 4.
    Meyers ST, Anderson JT, Hung CM, Thompson J, Wager JF, Keszler DA (2008) J Am Chem Soc 130(51):17603. doi: https://doi.org/10.1021/ja808243k CrossRefGoogle Scholar
  5. 5.
    Theissmann R, Bubel S, Sanlialp M, Busch C, Schierning G, Schmechel R (2011) Thin Solid Films 519:5623. doi: https://doi.org/10.1016/j.tsf.2011.02.073 CrossRefGoogle Scholar
  6. 6.
    Janotti A, Van de Walle CG (2009) Rep Prog Phys 72(12):126501. doi: https://doi.org/10.1088/0034-4885/72/12/126501 CrossRefGoogle Scholar
  7. 7.
    O’Brien S, Nolan MG, Copuroglu M, Hamilton JA, Povey I, Pereira L, Martins R, Fortunato E, Pemble M (2010) Thin Solid Films 518(16):4515. doi: https://doi.org/10.1016/j.tsf.2009.12.020 CrossRefGoogle Scholar
  8. 8.
    Kajikawa Y (2006) J Cryst Growth 289(1):387. doi: https://doi.org/10.1016/j.jcrysgro.2005.11.089 CrossRefGoogle Scholar
  9. 9.
    Wang XH, Ding YF, Zhang J, Zhu ZQ, You SZ, Chen SQ, Zhu JZ (2006) Sensors Actuators B 115(1):421. doi: https://doi.org/10.1016/j.snb.2005.10.005 CrossRefGoogle Scholar
  10. 10.
    Chaabouni F, Abaab M, Rezig B (2004) Sensors Actuators B 100(1-2):200. doi: https://doi.org/10.1016/j.snb.2003.12.059 CrossRefGoogle Scholar
  11. 11.
    McCluskey MD, Jokela SJ (2007) Physica B Condens Matter 401:355. doi: https://doi.org/10.1016/j.physb.2007.08.186 CrossRefGoogle Scholar
  12. 12.
    Walther S, Schafer S, Jank MPM, Thiem H, Peukert W, Frey L, Ryssel H (2010) Microelectron Eng 87(11):2312. doi: https://doi.org/10.1016/j.mee.2010.03.009 CrossRefGoogle Scholar
  13. 13.
    Koniger T, Munstedt H (2009) J Mater Sci 44(11):2736. doi: https://doi.org/10.1007/s10853-009-3357-3 CrossRefGoogle Scholar
  14. 14.
    Mechau N, Bubel S, Nikolova D, Hahn H (2010) Physica Status Solidi A 207(7):1684. doi: https://doi.org/10.1002/pssa.200983768 CrossRefGoogle Scholar
  15. 15.
    Okamura K, Mechau N, Nikolova D, Hahn H (2008) Appl Phys Lett 93(8):083105. doi: https://doi.org/10.1063/1.2972121 CrossRefGoogle Scholar
  16. 16.
    Bubel S, Nikolova D, Mechau N, Hahn H (2009) J Appl Phys 105(6):064514. doi: https://doi.org/10.1063/1.3097754 CrossRefGoogle Scholar
  17. 17.
    Guo L, Yang SH, Yang CL, Yu P, Wang JN, Ge WK, Wong GKL (2000) Chem Mater 12(8):2268. doi: https://doi.org/10.1021/cm9907817 CrossRefGoogle Scholar
  18. 18.
    Shockley W (1952) Proc Inst Radio Eng 40(11):1365. doi: https://doi.org/10.1109/JRPROC.1952.273964 Google Scholar
  19. 19.
    Sze SM, Kwok NK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York. ISBN-13: 978-0471143239Google Scholar
  20. 20.
    Bubel S, Mechau N, Hahn H, Schmechel R (2010) J Appl Phys 108(12):124502. doi: https://doi.org/10.1063/1.3524184 CrossRefGoogle Scholar
  21. 21.
    Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85(26):6389. doi: https://doi.org/10.1063/1.1840116 CrossRefGoogle Scholar
  22. 22.
    Fan ZY, Wang DW, Chang PC, Tseng WY, Lu JG (2004) Appl Phys Lett 85(24):5923. doi: https://doi.org/10.1063/1.1836870 CrossRefGoogle Scholar
  23. 23.
    Neumann F, Genenko YA, Melzer C, von Seggern H (2006) J Appl Phys 100(8):084511. doi: https://doi.org/10.1063/1.2360383 CrossRefGoogle Scholar
  24. 24.
    Genenko YA, Yampolskii SV, Melzer C, Stegmaier K, von Seggern H (2010) Phys Rev B 81(12):125310. doi: https://doi.org/10.1103/PhysRevB.81.125310 CrossRefGoogle Scholar
  25. 25.
    Ashkenov N, Mbenkum BN, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev EM, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B (2003) J Appl Phys 93(1):126. https://doi.org/10.1063/1.1526935 CrossRefGoogle Scholar
  26. 26.
    Michaelson HB (1978) Ibm J Res Dev 22(1):72CrossRefGoogle Scholar
  27. 27.
    Jacobi K, Zwicker G, Gutmann A (1984) Surf Sci 141(1):109CrossRefGoogle Scholar
  28. 28.
    Sundaram KB, Khan A (1997) J Vac Sci Technol A 15(2):428CrossRefGoogle Scholar
  29. 29.
    Zmeskal O, Nespurek S, Weiter M (2007) Chaos Solitons Fractals 34(2):143. doi: https://doi.org/10.1016/j.chaos.2006.04.006 CrossRefGoogle Scholar
  30. 30.
    Nespurek S, Zmeskal O, Sworakowski J (2008) Thin Solid Films 516(24):8949. doi: https://doi.org/10.1016/j.tsf.2007.11.070 CrossRefGoogle Scholar
  31. 31.
    Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New York and London. ISBN-13: 978-0124353503Google Scholar
  32. 32.
    Gould RD, Rahman MS (1981) J Phys D 14(1):79. doi: https://doi.org/10.1088/0022-3727/14/1/011 CrossRefGoogle Scholar
  33. 33.
    Mahmood FS, Gould RD, Hassan AK, Salih HM (1995) Thin Solid Films 270(1-2):376. doi: https://doi.org/10.1016/0040-6090(95)06928-3 CrossRefGoogle Scholar
  34. 34.
    Allen MW, Swartz CH, Myers TH, Veal TD, McConville CF, Durbin SM (2010) Phys Rev B 81(7):075211. doi: https://doi.org/10.1103/PhysRevB.81.075211 CrossRefGoogle Scholar
  35. 35.
    Jetson R, Yin K, Donovan K, Zhu ZT (2010) Mater Chem Phys 124(1):417. doi: https://doi.org/10.1016/j.matchemphys.2010.06.058 CrossRefGoogle Scholar
  36. 36.
    Koch U, Fojtik A, Weller H, Henglein A (1985) Chem Phys Lett 122(5):507. doi: https://doi.org/10.1016/0009-2614(85)87255-9 CrossRefGoogle Scholar
  37. 37.
    Look DC (2007) Surf Sci 601(23):5315. doi: https://doi.org/10.1016/j.susc.2007-09.030 CrossRefGoogle Scholar
  38. 38.
    Yan WJ, Mechau N, Hahn H, Krupke R (2010) Nanotechnology 21(11):115501. doi: https://doi.org/10.1088/0957-4484/21/11/115501 CrossRefGoogle Scholar
  39. 39.
    Cho PS, Kim KW, Lee JH (2006) J Electroceram 17(2-4):975. doi: https://doi.org/10.1007/s10832-006-8146-7 CrossRefGoogle Scholar
  40. 40.
    Devi GS, Subrahmanyam VB, Gadkari SC, Gupta SK (2006) Analytica Chimica Acta 568(1-2):41. doi: https://doi.org/10.1016/j.aca.2006.02.040 CrossRefGoogle Scholar
  41. 41.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sensors Actuators B 115(1):247. doi: https://doi.org/10.1016/j.snb.2005.09.008 CrossRefGoogle Scholar
  42. 42.
    Wang HT, Kang BS, Ren F, Tien LC, Sadik PW, Norton DP, Pearton SJ, Lin J (2005) Appl Phys Lett 86(24):243503. doi: https://doi.org/10.1063/1.1949707 CrossRefGoogle Scholar
  43. 43.
    Christoulakis S, Suchea M, Koudoumas E, Katharakis M, Katsarakis N, Kiriakidis G (2006) Appl Surf Sci 252(15):5351. doi: https://doi.org/10.1016/j.apsusc.2005.12.071 CrossRefGoogle Scholar
  44. 44.
    Wang CH, Chu XF, Wu MW (2006) Sensors Actuators B 113(1):320. doi: https://doi.org/10.1016/j.snb.2005.03.011 CrossRefGoogle Scholar
  45. 45.
    Bie LJ, Yan XN, Yin J, Duan YQ, Yuan ZH (2007) Sensors Actuators B 126(2):604. doi: https://doi.org/10.1016/j.snb.2007.04.011 CrossRefGoogle Scholar
  46. 46.
    Gorla CR, Emanetoglu NW, Liang S, Mayo WE, Lu Y, Wraback M, Shen H (1999) J Appl Phys 85(5):2595. doi: https://doi.org/10.1063/1.369577 CrossRefGoogle Scholar
  47. 47.
    Zhang JH, Liu HY, Wang ZL, Ming NB, Li ZR, Biris AS (2007) Adv Funct Mater 17(18):3897. doi: https://doi.org/10.1002/adfm.200700734 CrossRefGoogle Scholar
  48. 48.
    Liu D, Wu W, Qiu Y, Yang S, Xiao S, Wang QQ, Ding L, Wang J (2008) Langmuir 24(9):5052. doi: https://doi.org/10.1021/la800074f CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenDuisburgGermany
  2. 2.Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations