Journal of Materials Science

, Volume 46, Issue 24, pp 7713–7724 | Cite as

On the intrinsic ductility of electrodeposited nanocrystalline metals

  • I. BrooksEmail author
  • G. Palumbo
  • G. D. Hibbard
  • Zhirui Wang
  • U. Erb


While nanocrystalline materials hold promise for structural applications in which increased strength is beneficial, their adoption has been hindered by concerns over the achievable ductility, resulting largely from considerable data scatter in the literature. A statistically significant set of 147 electrodeposited nanocrystalline tensile specimens was used to investigate this topic, and it was found that while necking elongation obeys similar processing quality and geometrical dependencies as conventional engineering metals, the intrinsic ductility as measured by uniform plastic strain was unexpectedly independent of microstructure over the grain size range of 10–80 nm. This indicates that the underlying physical processes of grain boundary-mediated damage formation are strain-oriented phenomena that can be defined by a critical plastic strain regardless of the strength of the material as a whole.


Nanocrystalline Material Plastic Instability Plane Strain Deformation Weibull Plot Diffuse Necking 



The authors gratefully acknowledge the generous support of the Natural Sciences and Engineering Research Council of Canada, Industry Canada (Technology Partnerships Canada program), National Research Council (Industrial Research Assistance Program), Ontario Research Fund, and the U.S. Department of Defense Strategic Environmental Research and Development Program project PP-1152.


  1. 1.
    Hall EO (1951) Proc Phys Soc Lond B64:747CrossRefGoogle Scholar
  2. 2.
    Petch NJ (1953) J Iron Steel Inst 173:25Google Scholar
  3. 3.
    Wang N, Wang Z, Aust KT, Erb U (1995) Acta Metall Mater 43(2):519CrossRefGoogle Scholar
  4. 4.
    Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957CrossRefGoogle Scholar
  5. 5.
    Hansen N (2005) Adv Eng Mater 7(9):815CrossRefGoogle Scholar
  6. 6.
    Weertman JR (2007) In: Koch CC (ed) Nanostructured materials, 2nd edn. William Andrew, Norwich, p 397Google Scholar
  7. 7.
    El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Scr Metall Mater 27:1185CrossRefGoogle Scholar
  8. 8.
    Erb U, Palumbo G, Zugic R, Aust KT (1996) In: Suryanarayana C et al (eds) Processing and properties of nanocrystalline materials. TMS, Warrendale, p 93Google Scholar
  9. 9.
    Koch CC (2003) J Metastab Nano Mater 18:9Google Scholar
  10. 10.
    Koch CC (2007) In: Koch CC et al (eds) Structural nanocrystalline materials. Cambridge University Press, Cambridge, p 134CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Zhu Y, Lavernia EJ (2010) Adv Eng Mater 12(8):769CrossRefGoogle Scholar
  12. 12.
    Erb U, El-Sherik AM (1994) US Patent #5,352,266Google Scholar
  13. 13.
    Erb U, El-Sherik AM, Cheung CKS, Aus MJ (1995) US Patent #5,433,797Google Scholar
  14. 14.
    El-Sherik AM, Erb U (1995) J Mater Sci 30:5743. doi: CrossRefGoogle Scholar
  15. 15.
    McMahon G, Erb U (1989) Microstr Sci 17:447Google Scholar
  16. 16.
    Cheung C, Palumbo G, Erb U (1994) Scr Metall Mater 31(6):735CrossRefGoogle Scholar
  17. 17.
    Cheung C, Djuanda F, Erb U, Palumbo G (1995) Nanostr Mater 5(5):513CrossRefGoogle Scholar
  18. 18.
    Cheung C, Nolan P, Erb U (1994) Mater Lett 20:135CrossRefGoogle Scholar
  19. 19.
    Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Phil Mag A 80(4):1017CrossRefGoogle Scholar
  20. 20.
    Brooks I, Lin P, Palumbo G, Hibbard GD, Erb U (2008) Mater Sci Eng A 491:412CrossRefGoogle Scholar
  21. 21.
    ASTM Standard E8/E8M-09 (2009) ASTM International, West ConshohockenGoogle Scholar
  22. 22.
    Zimmerman AF, Palumbo G, Aust KT, Erb U (2002) Mater Sci Eng A 328:137CrossRefGoogle Scholar
  23. 23.
    Dieter GE (1988) Mechanical metallurgy, SI metric edn. McGraw-Hill, London, p 290Google Scholar
  24. 24.
    Weibull W (1939) Ingen Vetenskaps Acad Proc 151:153Google Scholar
  25. 25.
    Dieter GE (1985) In: Metals handbook, vol 34, ASM International, Metals Park, p 12Google Scholar
  26. 26.
    Erb U, Aust KT, Palumbo G (2007) In: Koch CC (ed) Nanostructured materials, 2nd edn. William Andrew, Norwich, p 235CrossRefGoogle Scholar
  27. 27.
    Li H, Ebrahimi F (2006) Acta Mater 54:2877CrossRefGoogle Scholar
  28. 28.
    Hasnaoui A, Van Swygenhoven H, Derlet PM (2003) Science 300:1550CrossRefGoogle Scholar
  29. 29.
    Shan Z, Knapp JA, Follstaedt DM, Stach EA, Wiezorek JMK, Mao SX (2008) Phys Rev Lett 100:105502CrossRefGoogle Scholar
  30. 30.
    Ovid’ko IA, Sheinerman AG, Skiba NV (2011) Acta Mater 59:678CrossRefGoogle Scholar
  31. 31.
    Koch CC, Youssef KM, Scattergood RO, Murty KL (2005) Adv Eng Mater 7(9):797CrossRefGoogle Scholar
  32. 32.
    Misra A, Zhang X, Hammon D, Hoagland RG (2005) Acta Mater 53:221CrossRefGoogle Scholar
  33. 33.
    Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Scr Mater 59:627CrossRefGoogle Scholar
  34. 34.
    Kula EB, Fahey NH (1961) Mat Res Stand 1:631Google Scholar
  35. 35.
    Weibull W (1951) Appl Mech 18:293Google Scholar
  36. 36.
    ASTM Standard C1239-07 (2007) ASTM International, West ConshohockenGoogle Scholar
  37. 37.
    Teng X, Mae H, Bai Y, Wierzbicki T (2008) Eng Fract Mech 75:4610CrossRefGoogle Scholar
  38. 38.
    Teng X, Mae H, Bai Y, Wierzbicki T (2009) Eng Fract Mech 76:983CrossRefGoogle Scholar
  39. 39.
    Hashemi H, Raiszadeh R (2009) J Appl Sci 9(11):2115CrossRefGoogle Scholar
  40. 40.
    Zahedi H, Emamy M, Razaghian A, Mahta M, Campbell J, Tiryakioglu M (2007) Metall Mater Trans A 38:659CrossRefGoogle Scholar
  41. 41.
    Nadai A (1950) Theory of flow and fracture of solids, vol 1. McGraw-Hill, New York, p 319Google Scholar
  42. 42.
    Ragab AR, Bayoumi SE (1999) Engineering solid mechanics. CRC Press, Boca Raton, p 738Google Scholar
  43. 43.
    Abernathy RB (1996) The new Weibull handbook, 4th edn. Gulf Pub. Co, North Palm BeachGoogle Scholar
  44. 44.
    Bouaziz O (2009) Adv Eng Mater 11(10):767CrossRefGoogle Scholar
  45. 45.
    Massart TJ, Pardoen T (2010) Acta Mater 58:5768CrossRefGoogle Scholar
  46. 46.
    Ovid’ko IA (2007) In: Koch CC et al (eds) Structural nanocrystalline materials. Cambridge University Press, Cambridge, p 280Google Scholar
  47. 47.
    Bringa EM, Traiviratana S, Meyers MA (2010) Acta Mater 58:4458CrossRefGoogle Scholar
  48. 48.
    Bulatov VV, Wolfer WG, Kumar M (2010) Scr Mater 63:144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • I. Brooks
    • 1
    • 2
    Email author
  • G. Palumbo
    • 2
  • G. D. Hibbard
    • 1
  • Zhirui Wang
    • 1
  • U. Erb
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Integran Technologies Inc.MississaugaCanada

Personalised recommendations