Journal of Materials Science

, Volume 46, Issue 24, pp 7696–7705 | Cite as

Microstructural investigations of XW-42 and M2 tool steels in semi-solid zones via direct partial remelting route

  • M. Z. OmarEmail author
  • A. Alfan
  • J. Syarif
  • H. V. Atkinson


A suitable microstructure for thixoforming consists of spheroidal grains in a liquid matrix. In order to achieve this, some processing routes have been established. In this study, microstructural evolution of XW-42 and AISI M2 steels via direct partial remelting from the as-annealed condition was examined. Both steels were found to possess certain types of carbides that dissolved when subjected to heating inside the semi-solid zones. The types of carbides were MC-M6C for AISI M2 steel (fully dissolved between 1280 and 1300 °C) and M7C3 for XW-42 steel (fully dissolved between 1250 and 1270 °C). The dissolution of these grain boundary carbides during partial remelting helps with the grain spheroidisation and also with providing grain lubrication for the forming process through solid–liquid particle contact. In addition, solid–solid contacts were also observed (in 2D as well as 3D microstructural observation) and considered useful to provide structural integrity prior to forming. However, these contacts also must also be weak enough to be sheared easily. Compression test results for AISI M2 steel showed that thixotropic behaviour and complete mould filling were observed starting from 35 liquid percent. The same behaviour is also expected to occur for XW-42 steel due to its similarity in microstructural evolution with AISI M2 steel.


Carbide Differential Thermal Analysis Solid Skeleton Eutectic Carbide Inductive Couple Plasma Mass Spectroscopy 



The authors would like to thank to the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for sponsoring this study and P. Kapranos of The University of Sheffield for helpful discussions.


  1. 1.
    Kapranos P, Kirkwood DH, Sellars CM (1989) In : Exner HE Schumacher V (eds) Advanced material and process, vol 1: advanced processing and high temperature materials. Proceedings EUROMAT Conference, Deutsche Gesellschaft für Metallkunde, OberuselGoogle Scholar
  2. 2.
    Spencer DB, Mehrabian R, Flemings MC (1972) Metall Trans 3:1925CrossRefGoogle Scholar
  3. 3.
    Fan Z (2002) Int Mater Rev 47:49CrossRefGoogle Scholar
  4. 4.
    Hirt G, Khizhnyakova L, Baadjou R, Knauf F, Kopp R (2009) In: Hirt G, Kopp R (eds) Thixoforming-semi-solid metal processing. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  5. 5.
    Kirkwood DH, Suéry M, Kapranos P, Atkinson HV, Young K (2010) Semi-solid processing of alloys. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  6. 6.
    Behrens B, Haller B, Fischer D (2004) Steel Res Int 75:561CrossRefGoogle Scholar
  7. 7.
    Kopp R, Shimahara H, Schneider JM, Kurapov D, Telle R, Münstermann S (2004) Steel Res Int 75:569CrossRefGoogle Scholar
  8. 8.
    Kurapov D, Scheneider JM (2004) Steel Res Int 75:577CrossRefGoogle Scholar
  9. 9.
    Küthe F, Schonbohm A, Abel D, Kopp R (2004) Steel Res Int 75:593CrossRefGoogle Scholar
  10. 10.
    Omar MZ, Palmiere EJ, Howe AA, Atkinson HV, Kapranos P (2005) Mater Sci Eng A395:53CrossRefGoogle Scholar
  11. 11.
    Omar MZ, Atkinson HV, Palmiere EJ, Howe AA, Kapranos P (2004) Steel Res Int 75:552CrossRefGoogle Scholar
  12. 12.
    Bramann H, Afrath C, Grimmig T, Fehlbier M, Bührig-Polaczek A (2004) Steel Res Int 75:537CrossRefGoogle Scholar
  13. 13.
    Uhlenhaut DI, Kradolfer J, Püttgen W, Löffler JF, Uggowitzer PJ (2006) Acta Mater 54:2727CrossRefGoogle Scholar
  14. 14.
    Püttgen W, Hallstedt B, Bleck W, Löffler F, Uggowitzer PJ (2007) Acta Mater 55:1033CrossRefGoogle Scholar
  15. 15.
    Li JY, Sugiyama S, Yanagimoto J (2005) J Mater Process Technol 161:396CrossRefGoogle Scholar
  16. 16.
    Püttgen W, Hallstedt B, Bleck W, Löffler JF, Uggowitzer PJ (2007) Acta Mater 55:6553CrossRefGoogle Scholar
  17. 17.
    Omar MZ, Atkinson HV, Howe AA, Palmiere EJ, Kapranos P, Ghazali MJ (2009) J Mater Sci 44:869. doi: CrossRefGoogle Scholar
  18. 18.
    Kirkwood DH (1994) Int Mater Rev 39:173CrossRefGoogle Scholar
  19. 19.
    Saunders N, Guo Z, Li X, Miodownik AP, Schillé J (2003) JOM 12:60CrossRefGoogle Scholar
  20. 20.
    Niroumand B, Xia K (2000) Mater Sci Eng A 283:70CrossRefGoogle Scholar
  21. 21.
    Roberts GA, Hamaker JC, Johnson AR (1971) Tool steels, 2nd edn. American Society for Metals, Metals ParkGoogle Scholar
  22. 22.
    ASM (1998) Metals handbook, 9th edn, vol 1. ASM International, Metals ParkGoogle Scholar
  23. 23.
    Meuser H, Bleck W (2001) Steel Res Int 72:271CrossRefGoogle Scholar
  24. 24.
    Püttgen W, Bleck W (2004) Steel Res Int 75:531CrossRefGoogle Scholar
  25. 25.
    Liu D, Atkinson HV, Jones H (2005) Acta Mater 53:3807CrossRefGoogle Scholar
  26. 26.
    Bhadeshia HKDH, Honeycombe RWK (2006) Steels-microstructures and properties, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  27. 27.
    Tzimas E, Zavaliangos A (2000) Mater Sci Eng A 289:228CrossRefGoogle Scholar
  28. 28.
    Wolfsdorf TL, Bender WH, Voorhees PW (1997) Acta Mater 45:2279CrossRefGoogle Scholar
  29. 29.
    Omar MZ, Palmiere EJ, Howe AA, Atkinson HV, Kapranos P (2004) In: Proceeding of the 8th international conference on semi-solid processings of alloys and composites, Limassol. North American Die Casting Association, WheelingGoogle Scholar
  30. 30.
    Omar MZ, Atkinson HV, Kapranos P (2011) Metall Mater Trans A. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Z. Omar
    • 1
    Email author
  • A. Alfan
    • 1
  • J. Syarif
    • 1
  • H. V. Atkinson
    • 2
  1. 1.Department of Mechanical and Materials Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations