Journal of Materials Science

, Volume 46, Issue 24, pp 7672–7680 | Cite as

Effect of polyphosphazene and modified carbon nanotubes on the morphological and thermo-mechanical properties of polyphenylene sulfide and liquid crystalline polymer blend system

  • G. C. NayakEmail author
  • R. Rajasekar
  • S. Sahoo
  • C. K. Das
  • A. K. Saxena
  • A. Ranjan


Ternary blends of polyphenylene sulfide (PPS) and liquid crystalline polymer (LCP) with either polyphosphazene, unmodified multiwall carbon nanotubes (MWCNTs) or SiC-coated MWCNTs, were prepared by melt blending. While polyphosphazene improved the compatibility between the PPS and LCP, unmodified MWCNTs promoted LCP domain deformation, from spherical to ellipsoidal. Long LCP fibers were formed in presence of SiC-coated MWCNTs due to the bridging effect of modified MWCNTs at the interface of PPS and LCP. This bridging effect was confirmed by field emission scanning electron microscopy (FESEM). The better dispersion of SiC-coated MWCNTs was confirmed by both FESEM and transmission electron microscopy analysis. The superior mechanical properties of SiC-coated MWCNTs added blend system can be attributed to the fibrillation of LCP and better dispersion of SiC-coated MWCNTs. Polyphosphazene containing blend system showed lowest thermal stability while blend with SiC-coated MWCNTs was found to be highest, among all the blend systems.


High Resolution Transmission Electron Microscopy Storage Modulus High Resolution Transmission Electron Microscopy Field Emission Scanning Electron Microscopy Image Liquid Crystalline Polymer 


  1. 1.
    Datta D, Fruitwala H, Kohli A, Weiss RA (1990) Polym Eng Sci 30:1005CrossRefGoogle Scholar
  2. 2.
    Datta D, Weiss RA (1991) ACS Symp Series 462:144CrossRefGoogle Scholar
  3. 3.
    Robeson LM (2007) Polymers blends: a comprehensive review. Hanser Verlag, Munich, p 159Google Scholar
  4. 4.
    Shonaike GO, Yamaguchi S, Ohta M, Hamada H, Maekawa Z, Nakamichi M et al (1994) Eur Polym J 30:413CrossRefGoogle Scholar
  5. 5.
    Saengsuwana S, Limcharoena SB, Mitchellb GR, Olley RH (1003) Polymer 44:3407CrossRefGoogle Scholar
  6. 6.
    Mehta A, Isayev AI (1991) Polym Eng Sci 31:971CrossRefGoogle Scholar
  7. 7.
    Lee H, Denn MM (2000) J Non-Newton Fluid Mech 93:315CrossRefGoogle Scholar
  8. 8.
    Blizard KG, Federici C, Federico O, Chapoy LL (1990) Polym Eng Sci 30:1442CrossRefGoogle Scholar
  9. 9.
    Olszynski P, Kozlowski M, Kozlowska A (2002) Mat Res Innov 6:1CrossRefGoogle Scholar
  10. 10.
    He J, Bu W, Zhang H (1995) Polym Eng Sci 35:1695CrossRefGoogle Scholar
  11. 11.
    Mehta A, Isayev AI (1991) Polym Eng Sci 31:963CrossRefGoogle Scholar
  12. 12.
    Kim JY, Kim SH J (2005) Polym Sci B 43:3600CrossRefGoogle Scholar
  13. 13.
    Bose S, Das CK, Saxena AK, Ranjan A (2011) J Appl Polym Sci 119:1914CrossRefGoogle Scholar
  14. 14.
    Bose S, Pramanik N, Das CK, Saxena AK, Ranjan A (2010) Mater Des 31:1148CrossRefGoogle Scholar
  15. 15.
    Lee MW, Hu X, Yue CY, Li L, Tam KC, Nakayama K (2002) J Appl Polym Sci 86:2070CrossRefGoogle Scholar
  16. 16.
    Lee MW, Hu X, Li L, Yue CY, Tam KC (2003) Polym Int 52:276CrossRefGoogle Scholar
  17. 17.
    Zhang L, Tam KC, Gan LH, Yue CY, Lam YC, Hu X (2003) J Appl Polym Sci 87:1484CrossRefGoogle Scholar
  18. 18.
    Lee MW, Hu X, Li L, Yue CY, Tam KC, Cheong LY (2003) Compos Sci Technol 63:1921CrossRefGoogle Scholar
  19. 19.
    Wu L, Chen P, Zhang J, He J (2006) Polymer 47:448CrossRefGoogle Scholar
  20. 20.
    Ding Y, Zhang J, Chen P, Zhang B, Yi Z, He J (2004) Polymer 45:8051CrossRefGoogle Scholar
  21. 21.
    Chen J, Chen P, Wu L, Zhang J, He J (2006) Polymer 47:5402CrossRefGoogle Scholar
  22. 22.
    Tjong SC, Meng YZ (1999) Polymer 40:1109CrossRefGoogle Scholar
  23. 23.
    Tjong SC, Meng YZ (1999) Polymer 40:7275CrossRefGoogle Scholar
  24. 24.
    He J, Zhang H, Wang Y (1997) Polymer 38:4279CrossRefGoogle Scholar
  25. 25.
    Chen J, Chen P, Wu L, Zhang J, He J (2007) Polymer 48:4242CrossRefGoogle Scholar
  26. 26.
    Zhang B, Ding Y, Chen P, Liu C, Zhang J, He J et al (2005) Polymer 46:5385CrossRefGoogle Scholar
  27. 27.
    Nayak GC, Rajasekar R, Das CK (2009) J Nanotechnol. doi: CrossRefGoogle Scholar
  28. 28.
    Nayak GC, Rajasekar R, Das CK (2010) Composites A 41:1662CrossRefGoogle Scholar
  29. 29.
    Nayak GC, Rajasekar R, Das CK (2010) J Mater Sci. doi: CrossRefGoogle Scholar
  30. 30.
    Potschke P, Bhattacharyya AR, Janke A (2003) Polymer 44:8061CrossRefGoogle Scholar
  31. 31.
    Hirsch A, Vostrowsky O (2005) Top Curr Chem 245:193CrossRefGoogle Scholar
  32. 32.
    Katar SL, Labiosa AB, Plaud AE, Vargas EM, Fonseca L, Weiner BR et al (2010) Nanoscale Res Lett 5:74CrossRefGoogle Scholar
  33. 33.
    Liu JW, Zhong DY, Xie FQ, Sun M, Wang EG, Liu WX (2001) Chem Phys Lett 348:357CrossRefGoogle Scholar
  34. 34.
    Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Compos Sci Technol 64:2283CrossRefGoogle Scholar
  35. 35.
    Chatterjee A, Deopura BL (2006) J Appl Polym Sci 100:3574CrossRefGoogle Scholar
  36. 36.
    Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W (2002) J Macromol Rapid Commun 23:761CrossRefGoogle Scholar
  37. 37.
    Marosfoi BB, Marosi ASG, Tabuani D, Camino G, Pagliari S (2006) J Therm Anal Calorim 86:669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. C. Nayak
    • 1
    Email author
  • R. Rajasekar
    • 1
  • S. Sahoo
    • 1
  • C. K. Das
    • 1
  • A. K. Saxena
    • 2
  • A. Ranjan
    • 2
  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia
  2. 2.Applied Chemistry DivisionDMSRDEKanpurIndia

Personalised recommendations