Journal of Materials Science

, Volume 46, Issue 24, pp 7660–7671 | Cite as

Prediction of the long-term behaviour of high modulus fibres using the stepped isostress method (SSM)

  • Ioannis P. GiannopoulosEmail author
  • Chris J. Burgoyne


A new accelerated technique, called the stepped isostress method (SSM), is presented that allows accelerated testing of materials to determine their creep response, and in particular, their creep-rupture behaviour. The approach in SSM testing is similar to the more familiar stepped isothermal method (SIM) but the acceleration is now obtained by increasing the stress in steps rather than stepping the temperature. Additional stress provides energy to the system in an analogue of the effect of heat in SIM. This method relies on the time–stress superposition concept. Various theories, assumptions and the different steps of the method are described in detail. This method is advantageous when compared with SIM because there is no need to use elevated temperatures, which may affect the chemical properties of the tested materials. The applicability of this method is investigated. The paper presents testing on Kevlar 49 yarns using SSM. The resulting creep curves and rupture times are compared with those obtained from SIM and conventional creep testing carried out in the past. The results show good correlation between the three test methods. The ability to carry out reliable creep tests in a reasonable time at low stress levels allows a designer to have much more confidence in the data for creep-rupture behaviour for fibres and allows confident prediction of structural lifetimes.


Creep Rate Creep Curve Master Curve Rupture Time Aramid Fibre 


  1. 1.
    Guimaraes GB (1988) Parallel-lay aramid ropes for use in structural engineering. University of London, LondonGoogle Scholar
  2. 2.
    Burgoyne, CJ (1992) In: Doran DK (ed) Construction materials reference book, Butterworths, OxfordGoogle Scholar
  3. 3.
    Gerritse A, Taerwe L (1999) In: Proceedings of the 4th international symposium on fiber reinforced polymer reinforcement for reinforced concrete structures, ACI SP-188Google Scholar
  4. 4.
    Giannopoulos IP (2009) Creep and creep-rupture behaviour of aramid fibres. University of Cambridge, CambridgeGoogle Scholar
  5. 5.
    Giannopoulos IP, Burgoyne CJ (2009) Struct Build 162(4):221CrossRefGoogle Scholar
  6. 6.
    Chiao TT, Wells JE, Moore RL, Hamstad MA (1974) In: 3rd conference on composite materials: testing and designGoogle Scholar
  7. 7.
    Phoenix SL, Wu EM (1983) In: Hashin Z, Herakovich CT (eds) Mechanics of composites materials: recent advances, Pergamon Press, New YorkGoogle Scholar
  8. 8.
    Glaser RE, Moore RL, Chiao TT (1984) Compos Technol Rev 6(1):26CrossRefGoogle Scholar
  9. 9.
    Wagner HD, Schwartz P, Phoenix SL (1986) J Mater Sci 21:1868. doi: CrossRefGoogle Scholar
  10. 10.
    Wu HF, Phoenix SL, Schwartz P (1988) J Mater Sci 23:1851. doi: CrossRefGoogle Scholar
  11. 11.
    Phoenix SL, Grimes-Ledesma L, Thesken JC, Murthy PLN (2006) In: Proceedings of the american society for composites, 21st annual technical conference, 17–20 Sep 2006, The University of Michigan-Dearborn, DearbornGoogle Scholar
  12. 12.
    Chambers JJ (1986) Parallel-lay aramid ropes for use as tendons in prestressing concrete. University of London, LondonGoogle Scholar
  13. 13.
    Guimaraes GB, Burgoyne CJ (1992) J Mater Sci 27:2473. doi: CrossRefGoogle Scholar
  14. 14.
    Yamaguchi T, Kato Y, Nishimura T, Uomoto T (1997) In: Proceedings of the 3rd international symposium on non-metallic reinforcement for concrete structures (FRPRCS-3), vol 2, SapporoGoogle Scholar
  15. 15.
    Ando N, Matsukawa T, Hattori M, Mashima M (1997) In: Proceedings of the 3rd international symposium on non-metallic reinforcement for concrete structures (FRPRCS-3), vol 2, SapporoGoogle Scholar
  16. 16.
    Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, LondonGoogle Scholar
  17. 17.
    Thornton JS, Paulson JN, Sandri D (1998) In: Sixth international conference on geosynthetics, AtlantaGoogle Scholar
  18. 18.
    Alwis KGNC, Burgoyne CJ (2008) J Mater Sci 43(14):4789. doi: CrossRefGoogle Scholar
  19. 19.
    Lai J, Bakker A (1995) Polymer 36(1):93CrossRefGoogle Scholar
  20. 20.
    Hadid M, Rechak S, Tati A (2004) Mater Sci Eng 385:54CrossRefGoogle Scholar
  21. 21.
    Jazouli S, Luo W, Bremand F, Vu-Khanha T (2006) Key Eng Mater 340–341:1091Google Scholar
  22. 22.
    Ma CCM, Tai NH, Wu SH, Lin SH, Wu JF, Lin JM (1997) Composites B 28B:407CrossRefGoogle Scholar
  23. 23.
    Luo W, Wang C (2007) Key Eng Mater 340–341:1091CrossRefGoogle Scholar
  24. 24.
    Farquhar D, Mutrelle FM, Phoenix SL, Smith RL (1989) J Mater Sci 24:2151. doi: CrossRefGoogle Scholar
  25. 25.
    Ericksen RH (1976) Composites 7:189CrossRefGoogle Scholar
  26. 26.
    Ericksen RH (1985) Polymer 26:733CrossRefGoogle Scholar
  27. 27.
    Alwis KGNC (2003) Accelerated testing for long-term stress-rupture behaviour of aramid fibres. University of Cambridge, CambridgeGoogle Scholar
  28. 28.
    Yang HH (1993) Kevlar aramid fiber. Wiley, ChichesterGoogle Scholar
  29. 29.
    Du Pont EI (1991) Data manual for fibre optics and other cables. EI Du Pont de Nemours and Co (Inc.), WilmingtonGoogle Scholar
  30. 30.
    Giannopoulos IP, Burgoyne CJ (2009) In: 16th Concrete Conference, Paphos, 21–23 Oct 2009Google Scholar
  31. 31.
    Giannopoulos IP, Burgoyne CJ (2008) In: 5th conference on advanced composite materials in bridges and structures (ACMBS-V) Paper 79, WinnipegGoogle Scholar
  32. 32.
    Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100(31):12771CrossRefGoogle Scholar
  33. 33.
    Slutsker AI (1989) Makromol Chem 27:207CrossRefGoogle Scholar
  34. 34.
    Bosman M, Van der Zwaag S, Schenkels FAM (1995) J Mater Sci Lett 14:1440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Architectural EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations