Journal of Materials Science

, Volume 46, Issue 24, pp 7649–7659 | Cite as

Novel high performance functionalized ladderlike polyphenylsilsesquioxane/bismaleimide hybrids with very good flame retardancy, thermal, and dimensional stability

  • Dongxian Zhuo
  • Aijuan GuEmail author
  • Guozheng LiangEmail author
  • Qian Chen
  • Tong Chen
  • Li Yuan
  • Jiang-tao Hu


Novel high performance hybrids (N-PPSQ/BDM/DBA) with very good flame retardancy, thermal, and dimensional stability as well as low dielectric constant and loss were developed, which consist of 4,4′-bismaleimidodiphenyl methane/2,2′-diallyl bisphenol A (BDM/DBA) resin and a novel functionalized ladderlike polyphenylsilsesquioxane (N-PPSQ). N-PPSQ was synthesized through the hydrolysis and condensation between phenyltrimethoxysilane and γ-aminopropyl triethoxysilane, and its structure was characterized by X-ray diffraction, nuclear magnetic resonance, gel permeation chromatography, and Fourier transform infrared. Compared with BDM/DBA resin, N-PPSQ/BDM/DBA hybrids show significantly improved integrated performances including remarkably reduced dielectric constant and loss, significantly improved flame retardancy, thermal, and dimensional stability, showing great potential for applications having harsh requirements in integrated performances. For example, in the case of the hybrid with 15 wt% N-PPSQ, its coefficient of thermal expansion in glassy and rubbery state are only about 49 and 42% of that of BDM/DBA resin, respectively; its limiting oxygen index increases from about 26.1–42.1%; while its dielectric loss is only about 87% of that of BDM/DBA resin at 1 kHz. These attractive improved properties are attributed to the variety in the cross-linked structure induced by the presence of N-PPSQ.


Flame Retardancy Dynamic Mechanical Analysis Heat Release Rate Dimensional Stability Cone Calorimeter 



The authors thank Natural Science Foundation of China (50873073, 20974076), the Priority Academic Program Development of Jiangsu Higher Education Institutions, “Qing Lan Project” (2008), “333 Talent Project” (2011) and “Six Talent Peaks” (2009) of Jiangsu Province for financially supporting this project.


  1. 1.
    Zhuo DX, Gu AJ, Liang GZ, Hu JT, Yuan L, Chen XX (2011) J Mater Chem 21:6584CrossRefGoogle Scholar
  2. 2.
    Guo QP, Zheng HF, Zheng SX, Mi YQ, Zhu W (1999) J Mater Sci 34:123. doi: CrossRefGoogle Scholar
  3. 3.
    Jang J, Nam S, Chung DS, Kim SH, Yun WM, Park CE (2010) Adv Funct Mater 20:2611CrossRefGoogle Scholar
  4. 4.
    Chen XL, Yu J, Guo SY, Lu SQ, Luo Z, He M (2009) J Mater Sci 44:1324. doi: CrossRefGoogle Scholar
  5. 5.
    Ho TH, Hwang HJ, Shieh JY, Chung MC (2008) Polym Degrad Stab 93:2077CrossRefGoogle Scholar
  6. 6.
    Chang CW, Lin CH, Lin HT, Huang HJ, Hwang KY, Tu AP (2009) Eur Polym J 45:680CrossRefGoogle Scholar
  7. 7.
    Zhuo DX, Gu AJ, Liang GZ, Hu JT, Yuan L (2011) J Mater Sci 46:1571. doi: CrossRefGoogle Scholar
  8. 8.
    Lim H, Chang JY (2010) J Mater Chem 20:749CrossRefGoogle Scholar
  9. 9.
    Lin CH, Cai SX, Lin CH (2005) J Polym Sci Polym Chem 23:5971CrossRefGoogle Scholar
  10. 10.
    Chen XS, Yu ZZ, Liu W, Zhang S (2009) Polym Degrad Stab 94:1520CrossRefGoogle Scholar
  11. 11.
    Modesti M, Lorenzetti A, Besco S, Hrelja D, Semenzato S, Bertani R, Michelin RA (2008) Polym Degrad Stab 93:2166CrossRefGoogle Scholar
  12. 12.
    Zhuo DX, Gu AJ, Liang GZ, Hu JT, Zhou C, Yuan L. Polym Adv Technol. doi: CrossRefGoogle Scholar
  13. 13.
    Vothi H, Nquyen C, Lee K, Kim J (2010) Polym Degrad Stab 95:1092CrossRefGoogle Scholar
  14. 14.
    Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX (2010) Polymer 51:2435CrossRefGoogle Scholar
  15. 15.
    Deng J, Shi WF (2004) Eur Polym J 40:1137CrossRefGoogle Scholar
  16. 16.
    Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Horn BV, Guan ZB, Chen GH, Krishnan RS (2006) Science 311:1740CrossRefGoogle Scholar
  17. 17.
    Belva F, Bourbigot S, Duquesne S, Jama C, Bras ML, Pelegris C, Rivenet M (2006) Polym Adv Technol 17:304CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Sun DX, Zheng H, Wei M, Zhang LM (2007) J Mater Sci 42:545. doi: CrossRefGoogle Scholar
  19. 19.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409CrossRefGoogle Scholar
  20. 20.
    Tang HD, Xie P, Zhang RB (2002) J Am Chem Soc 124:10482CrossRefGoogle Scholar
  21. 21.
    Li GZ, Ye ML, Shi LH (1996) J Appl Polym Sci 60:1163CrossRefGoogle Scholar
  22. 22.
    Li GZ, Wang LC, Toghiani H, Daulton TL, Koyama K, Pittman CUJ (2001) Macromolecules 34:8686CrossRefGoogle Scholar
  23. 23.
    Ni Y, Zheng SX (2006) J Polym Sci Polym Chem 44:1093CrossRefGoogle Scholar
  24. 24.
    Feng YZ, Qi SL, Wu ZP, Wang XD, Yang XP, Wu DZ (2010) Mater Lett 64:2710CrossRefGoogle Scholar
  25. 25.
    Liang GZ, Gu AJ (1997) Bismaleimides. Chem Industry Press, BeijingGoogle Scholar
  26. 26.
    Hong SG, Yeh CS (2004) Polym Degrad Stab 83:529CrossRefGoogle Scholar
  27. 27.
    Li ZM, Yang MB, Huang R, Zhang MD, Feng JM (2001) J Appl Polym Sci 80:2245CrossRefGoogle Scholar
  28. 28.
    Liang GZ, Hu XL (2004) Polym Int 53:670CrossRefGoogle Scholar
  29. 29.
    Wang CS, Leu TS, Hsu KR (1998) Polymer 39:2921CrossRefGoogle Scholar
  30. 30.
    Grenier-Loustalot MF, Cunha LD (1998) Polymer 39:1799CrossRefGoogle Scholar
  31. 31.
    Kim DS, Han MJ, Lee JR, Chang JY (1994) Polym Adv Technol 5:287CrossRefGoogle Scholar
  32. 32.
    Kim SG, Choi J, Tamaki R, Laine RM (2005) Polymer 46:4514CrossRefGoogle Scholar
  33. 33.
    Brown JF, Vogt LH, Katchman A, Eustance JW, Kiser KM, Krantz KW (1960) J Am Chem Soc 82:6194CrossRefGoogle Scholar
  34. 34.
    Prado LA, Radovanovic E, Pastore HO, Yoshida IVP, Torriani IL (2000) J Polym Sci Polym Chem 38:1580CrossRefGoogle Scholar
  35. 35.
    Matsubara Y, Konishi W, Sugizaki T, Moriya O (2001) J Polym Sci Polym Chem 39:2125CrossRefGoogle Scholar
  36. 36.
    Bussu G, Lazzeri A (2006) J Mater Sci 41:6072. doi: CrossRefGoogle Scholar
  37. 37.
    Kim KM, Ogoshi T, Chujo Y (2005) J Polym Sci Polym Chem 43:473CrossRefGoogle Scholar
  38. 38.
    Li GZ, Jin Y, Shi LH, Ye ML, Bai F (1996) J Polym Sci Polym Phys 34:1079CrossRefGoogle Scholar
  39. 39.
    Rashid ESA, Ariffin K, Kooi CC, Akil HM (2009) Mater Design 30:1CrossRefGoogle Scholar
  40. 40.
    Wippl J, Schmidt HW, Giesa R (2005) Macromol Mater Eng 290:657CrossRefGoogle Scholar
  41. 41.
    Yung KC, Zhu BL, Wu J, Yue TM, Xie CS (2007) J Polym Sci Polym Phy 45:1662CrossRefGoogle Scholar
  42. 42.
    Yung KC, Zhu BL, Yue TM, Xie CS (2009) Compos Sci Technol 69:260CrossRefGoogle Scholar
  43. 43.
    Sonje PU, Subramanian KN, Lee A (2004) J Adv Mater 36:22Google Scholar
  44. 44.
    Sulaiman S, Brick CM, De SCM, Katzenstein JM, Laine RM, Basheer RA (2006) Macromolecules 39:5167CrossRefGoogle Scholar
  45. 45.
    Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S (2005) Macromol Rapid Commun 26:1445CrossRefGoogle Scholar
  46. 46.
    Zenetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA (2002) Chem Mater 14:189CrossRefGoogle Scholar
  47. 47.
    Lu SY, Hamerton I (2002) Prog Polym Sci 27:1661CrossRefGoogle Scholar
  48. 48.
    Zhou WJ, Yang H (2007) Thermochimi Acta 452:43CrossRefGoogle Scholar
  49. 49.
    Lji M, Serizawa S (1998) Polym Adv Technol 9:593CrossRefGoogle Scholar
  50. 50.
    Fan J, Hu X, Yue CY (2003) J Polym Sci Polym Phys 41:1123CrossRefGoogle Scholar
  51. 51.
    Fu JF, Shi LY, Yuan S, Zhong QD, Zhang DS, Chen Y, Wu J (2008) Polym Adv Technol 19:1597Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations