Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
- 1.9k Downloads
- 89 Citations
Abstract
Cellulose nanocrystals (CNCs) were prepared by acidic hydrolysis of cotton fibers (Whatman #1 filter paper). In our efforts to select conditions in which the hydrolysis media does not install labile protons on the cellulose crystals, a mineral acid other than sulfuric acid (H2SO4) was used. Furthermore, in our attempts to increase the yields of nanocrystals ultrasonic energy was applied during the hydrolysis reaction. The primary objective was to develop hydrolysis reaction conditions for the optimum and reproducible CNC production. As such, the use of hydrobromic acid (HBr) with the application of sonication as a function of concentration (1.5–4.0 M), temperature (80–100 °C), and time (1–4 h) was examined. Applying sonic energy during the reaction was found to have significant positive effects as far as reproducible high yields are concerned. Overall, the combination of 2.5 M HBr, 100 °C, and 3 h associated with the sonication during the reaction generated the highest nanocrystal yields. In addition to the optimization study three types of surface modifications including TEMPO-mediated oxidation, alkynation, and azidation were used to prepare surface-activated, reactive CNCs. Subsequently, click chemistry was employed for bringing together the modified nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.
Keywords
Cellulose Hydrolysis Reaction Ultrasonic Energy Cellulose Nanocrystals Photon Correlation SpectroscopyNotes
Acknowledgement
The authors would like to thank the College of Natural Resources at NCSU for the award of the Hofmann Fellowship to one of us (IF) that made graduate studies possible.
References
- 1.Battista OA (1950) Ind Eng Chem 42:502CrossRefGoogle Scholar
- 2.Dong X, Revol J, Gray D (1998) Cellulose 5:19CrossRefGoogle Scholar
- 3.Beck-Candanedo S, Roman M, Gray D, Gray G (2005) Biomacromolecules 6:1048CrossRefGoogle Scholar
- 4.Heinze T, Liebert T (2001) Prog Polym Sci 26:1689CrossRefGoogle Scholar
- 5.Klemm DK, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358CrossRefGoogle Scholar
- 6.Meldal M, Tornøe CW (2008) Chem Rev 108:2952CrossRefGoogle Scholar
- 7.Helms B, Mynar JL, Hawker CJ, Fréchet JMJ (2004) J Am Chem Soc 126:15020CrossRefGoogle Scholar
- 8.Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ (2009) Chem Rev 109:5620CrossRefGoogle Scholar
- 9.Liu J, Lam JWY, Tang BZ (2009) Chem Rev 109:5799CrossRefGoogle Scholar
- 10.Binder WH, Sachsenhofer R (2007) Macromol Rapid Commun 28:15CrossRefGoogle Scholar
- 11.Araki J, Wada M, Kuga S, Okano T (1999) J Wood Sci 45:258CrossRefGoogle Scholar
- 12.Araki J, Wada M, Kuga S (2001) Langmuir 17:21CrossRefGoogle Scholar
- 13.Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A: Physicochem Eng Aspects 142:75CrossRefGoogle Scholar
- 14.Sipahi-Sağlam E, Gelbrich M, Gruber E (2003) Cellulose 10:237CrossRefGoogle Scholar
- 15.Da Silva Perez D, Montanari S, Vignon MR (2003) Biomacromolecules 4:1417CrossRefGoogle Scholar
- 16.Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Biomacromolecules 10:1992CrossRefGoogle Scholar
- 17.Filpponen I, Argyropoulos DS (2010) Biomacromolecules 11:1060CrossRefGoogle Scholar
- 18.Liebert T, Hänsch C, Heinze T (2006) Macromol Rapid Commun 27:208CrossRefGoogle Scholar
- 19.Zhang J, Xu X-D, Wu D-Q, Zhang X-Z, Zhuo. R-X (2009) Carbohydr Polym 77:583CrossRefGoogle Scholar
- 20.Heinze T, Liebert T (2001) Prog Polym Sci 26:1689CrossRefGoogle Scholar
- 21.Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Biomacromolecules 8:3740CrossRefGoogle Scholar
- 22.Zoia L, King WT, Argyropoulos DS (2011) J Agric Food Chem 59:829 doi:10.102/JF103615eCrossRefGoogle Scholar
- 23.Dong XM, Kimura T, Revol J, Gray DG (1996) Langmuir 12:2076CrossRefGoogle Scholar
- 24.Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786CrossRefGoogle Scholar
- 25.Ahtee M, Hattula T, Mangs J, Paakkari T (1999) Paperi Ja Puu 8:475Google Scholar
- 26.Sugiyama J, Vuong R, Chanzy H (1991) Macromolecules 24:4168CrossRefGoogle Scholar
- 27.Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57CrossRefGoogle Scholar
- 28.Okita Y, Saito T, Akira Isogai (2010) Biomacromolecules 11:1696CrossRefGoogle Scholar
- 29.Nishiyama Y, Chanzy H, Langan P (2002) J Am Chem Soc 124:9074CrossRefGoogle Scholar
- 30.Tahiri C, Vignon M (2000) Cellulose 7:177CrossRefGoogle Scholar
- 31.Fan LT, Gharpuray MM, Lee Y-H (1987) Biotechnology Monographs. Springer-Verlag, Berlin, p 76Google Scholar
- 32.Araki J, Wada M, Kuga S, Okano T (2000) Langmuir 16:2413CrossRefGoogle Scholar
- 33.Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Macromolecules 31:5717CrossRefGoogle Scholar
- 34.Shibata I, Isogai A (2003) Cellulose 10:151CrossRefGoogle Scholar
- 35.Ibert M, Marsais F, Merbouh N (2002) Carbohydr Res 337:1059CrossRefGoogle Scholar
- 36.Kato Y, Matsuo R, Isogai A (2003) Carbohydr Polym 51:69CrossRefGoogle Scholar
- 37.Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromoleules 6:1048CrossRefGoogle Scholar
- 38.Wang N, Ding E, Cheng R (2008) Langmuir 24:5CrossRefGoogle Scholar