Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7319–7327 | Cite as

Effect of Sn addition on microstructure and dry sliding wear behaviors of hypereutectic aluminum–silicon alloy A390

  • X. F. WuEmail author
  • G. A. Zhang
Article

Abstract

In this study, the effect of Sn addition on the microstructure and dry sliding wear behaviors of as-cast and heat-treated hypereutectic A390 alloys was investigated. The microstructural features of the alloys were characterized by means of optical microscope, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy techniques and their wear characteristics were evaluated at different loads. The worn morphologies of the wear surface were examined by SEM. The results show that the β-Sn in as-cast A390 alloy precipitates mainly in the form of particles within the Al2Cu network on the interface of the eutectic silicon and α-Al phases and the grain boundaries of α-Al phase. The addition of Sn promotes the disintegrating and spheroidizing of both the eutectic and primary silicon of the A390 alloy during solid solution-aging treatment and β-Sn phase grains coalesces and grows, and some of them form the structure of Sn wrapping Si. The wear rates and friction factors of the as-cast and heat-treated A390 alloys with Sn are lower than those without Sn. At lower load, the addition of Sn changes the wear mechanism of as-cast A390 alloy from the combination of abrasive and adhesive wear without Sn into a single mild abrasion wear with Sn; at higher load, the wear of as-cast A390 alloy without Sn includes abrasion, adhesive, and fatigue one, while the addition of Sn effectively restrains the net-like cracks on the worn surface of the alloy and avoids the fatigue wear emerged.

Keywords

Wear Rate Wear Surface A390 Alloy Adhesive Wear Primary Silicon 

References

  1. 1.
    Clegg AJ, Das AA (1977) Wear 43:367CrossRefGoogle Scholar
  2. 2.
    Gupta M, Ling S (1999) J Alloys Compd 287:284CrossRefGoogle Scholar
  3. 3.
    Prasad BK, Venkateswarlu K, Modi OP, Yegneswaran AH (1996) J Mater Sci Lett 15:1773CrossRefGoogle Scholar
  4. 4.
    Davis FA, Eyre TS (1994) Tribol Int 27:171CrossRefGoogle Scholar
  5. 5.
    Dwivedi DK (2006) Mater Design 27:610CrossRefGoogle Scholar
  6. 6.
    Dey SK, Perry TA, Alpas AT (2009) Wear 267:515CrossRefGoogle Scholar
  7. 7.
    Dwivedi DK (2004) Mater Sci Eng A 382:328CrossRefGoogle Scholar
  8. 8.
    Ammar IA, Darwish S, Khalil MW, El-Taher SA (1989) Mater Chem Phys 21:1CrossRefGoogle Scholar
  9. 9.
    Torabin H, Pathak JP (1994) Wear 177:47CrossRefGoogle Scholar
  10. 10.
    Schouwenaars R, Jacobo VH, Ortiz A (2007) Wear 263:727CrossRefGoogle Scholar
  11. 11.
    Mohamed AMA, Samuel FH, Samuel AM, Doty HW, Valtierra S (2008) Metall Mater Trans A 39:490CrossRefGoogle Scholar
  12. 12.
    Mohamed AMA, Samuel FH, Samuel AM, Doty HW (2009) Metall Mater Trans A 40:240CrossRefGoogle Scholar
  13. 13.
    Kliauga AM, Vieira EA, Ferrante M (2008) Mater Sci Eng A 480:5CrossRefGoogle Scholar
  14. 14.
    Røset J, Saeter JA, Ustad T, Reiso O (2002) Mater Sci Forum 396–402:1205CrossRefGoogle Scholar
  15. 15.
    Anil M, Srivastava VC, Ghosh MK, Ojha SN (2010) Wear 268:1250CrossRefGoogle Scholar
  16. 16.
    Silcock JM (2002) Scr Mater 46:389CrossRefGoogle Scholar
  17. 17.
    Yuan GC, Li ZJ, Lou YX, Zhang XM (2000) Mater Sci Eng A 280:108CrossRefGoogle Scholar
  18. 18.
    Ogris E, Wahlen A, Lüchinger H, Uggowitzer PJ (2002) J Light Met 2:263CrossRefGoogle Scholar
  19. 19.
    Sharma R, Dwivedi DK (2005) Mater Sci Eng A 408:274CrossRefGoogle Scholar
  20. 20.
    Xu CL, Yang YF, Wang HY, Jiang QC (2007) J Mater Sci 42:6331. doi: https://doi.org/10.1007/s10853-006-1189-y CrossRefGoogle Scholar
  21. 21.
    Kliauga AM, Ferrante M (2002) Mater Sci Eng A 337:67CrossRefGoogle Scholar
  22. 22.
    Rudrakshi GB, Srivastava VC, Ojha SN (2007) Mater Sci Eng A 457:100CrossRefGoogle Scholar
  23. 23.
    Al-Rubaie KS, Goldenstein H, De Mello JDB (1999) Wear 225–229:163CrossRefGoogle Scholar
  24. 24.
    Muratoglu M, Aksoy M (2006) J Mater Process Technol 174:272CrossRefGoogle Scholar
  25. 25.
    Srivastava VC, Rudrakshi GB, Uhlenwinkel V, Ojha SN (2009) J Mater Sci 44:2288. doi: https://doi.org/10.1007/s10853-008-2924-3 CrossRefGoogle Scholar
  26. 26.
    Prasad BK, Venkateswarlu K, Modi OP, Yegneswaran AHJ (1996) Mater Sci Lett 15:1773CrossRefGoogle Scholar
  27. 27.
    Haque MM, Sharif A (2001) J Mater Process Technol 118:69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Liaoning University of TechnologyJinzhouPeople’s Republic of China

Personalised recommendations