Journal of Materials Science

, Volume 46, Issue 22, pp 7313–7318 | Cite as

Structural study of xK2O·(100 − x)[P2O5·CaO] glass system

  • Adriana N. RegosEmail author
  • R. Ciceo Lucacel
  • I. Ardelean


The P2O5–CaO glasses with incorporation of K2O were investigated using X-ray powder diffraction, infrared absorption, and Raman scattering. These measurements give information about potassium–calcium phosphate glasses related vibration modes and the nature of the bond between P, K, and Ca ions and surrounding oxygen atoms within the glass network. Thermal analysis DTA and GTA were also made to study behavior under different temperature regimes and to see chemical changes with time and temperature of these glasses. The evolution of the absorption bands, with the increasing of K2O, shows the significant distortions of the phosphate groups. Beginning with x = 35 mol% in Raman spectra appear new bands and the existing one disappear. But from Raman spectra we can see that the increasing of potassium oxide content leads to the appearance of gradually depolymerization process of the calcium phosphate network.


Differential Thermal Analysis Glass Matrix Differential Thermal Analysis Curve Phosphate Glass Glass Network 



The author Adriana Regos is grateful for the financial support from the project co-financed by the Sectoral Operational Program for Human Resources Development 2007–2013, Key Area of Intervention 1.5: Doctoral and post-doctoral programs in support of research; Contract POSDRU/88/1.5/S/60185 “Innovative doctoral studies in a knowledge based society,” Babeş-Bolyai University, Cluj Napoca, Romania. A. Regos wishes to thank for the financial support from programs co-financed by The Sectoral Operational Program Human Resources Development, Contract POSDRU 6/1.5/S/3—Doctoral studies: through science toward society.


  1. 1.
    Lippma E, Magi M, Samoson A, Enghelhardt G, Grimmer AR (1980) J Am Chem Soc 102:4889CrossRefGoogle Scholar
  2. 2.
    Van Wazer JR (1958) Phosphorus and its compounds. Interscience Publishers Ltd, LondonGoogle Scholar
  3. 3.
    Moustafa YM, Egili KE (1998) J Noncryst Solids 240:144CrossRefGoogle Scholar
  4. 4.
    Dai WD, Kawaoe NK, Lin XT, Dong J, Chen GP (2010) Biomaterials 31(8):2141CrossRefGoogle Scholar
  5. 5.
    Arzeian JM, Hogarth CA (1991) J Mater Sci 26(19):5353. doi: CrossRefGoogle Scholar
  6. 6.
    Salim MA, Khattak GD, Fodor PS, Wenger LE (2001) J Noncryst Solids 299:185CrossRefGoogle Scholar
  7. 7.
    Brow RK, Kirkpatrick RJ, Turner GL (1990) J Noncryst Solids 116:39CrossRefGoogle Scholar
  8. 8.
    Exarhos GJ, Miller PJ, Risen WM (1974) J Chem Phys 60:4145CrossRefGoogle Scholar
  9. 9.
    Metwalli E, Brow RK (2001) J Noncryst Solids 289:113CrossRefGoogle Scholar
  10. 10.
    Timar-Gabor A, Ivascu C, Vasiliniuc S, Daraban L, Ardelean I, Cosma C, Cozar O (2011) Appl Radiat Isot 69:780CrossRefGoogle Scholar
  11. 11.
    Rao KJ, Sobha KC, Kumar S (2001) Proc Indian Acad Sci Chem Sci 113:497CrossRefGoogle Scholar
  12. 12.
    Miller FA, Wilkins CH (1952) Anal Chem 24:1253CrossRefGoogle Scholar
  13. 13.
    Sun J, Li Y, Li L, Zhao W, Lei Li, Gao J, Ruan M, Shi J (2008) J Noncryst Solids 354:3799CrossRefGoogle Scholar
  14. 14.
    Higazy AA, Brige B (1985) J Mater Sci 20:2345. doi: CrossRefGoogle Scholar
  15. 15.
    Koo J, Bae BS, Na HK (1997) J Noncryst Solids 212:173CrossRefGoogle Scholar
  16. 16.
    Vedeanu N, Cozar O, Ardelean I, Filip S (2006) J Optoelectron Adv Mater 8:1135Google Scholar
  17. 17.
    Bues W, Gehrke HW (1956) Z Anorg Allgem Chem 288:367Google Scholar
  18. 18.
    Shih PY, Yung SW, Chin TS (1999) J Noncryst Solids 244:211CrossRefGoogle Scholar
  19. 19.
    Van Wazer JR (1958) Phosphorous and its compounds. Interscience, New YorkGoogle Scholar
  20. 20.
    Ciceo Lucacel R, Hulpus AO, Simion V, Ardelean I (2009) J Noncryst Solids 355:425CrossRefGoogle Scholar
  21. 21.
    Ahmed AA et. al. (2011) Solid State Sci. doi: 10.1016/j.solidstatesciences.2011.02.004CrossRefGoogle Scholar
  22. 22.
    Pemberton JE, Latifzadeh L, Subhash JP, Risbud H (1991) Chem Mater 3:195CrossRefGoogle Scholar
  23. 23.
    Wei TY, Hu Y, Hwa LG (2001) J Noncryst Solids 288:140CrossRefGoogle Scholar
  24. 24.
    Efimov AM (1997) J Noncryst Solids 209:209CrossRefGoogle Scholar
  25. 25.
    Peng YB, Day DE (1991) Glass Technol 32:166Google Scholar
  26. 26.
    Lockless SW, Zhou M, MacKinnon R (2007) PLoS Biol 5:121CrossRefGoogle Scholar
  27. 27.
    Byun JO, Kim BH, Hong KS, Jung HJ, Lee SW, Izyneev AA (1995) J Noncryst Solids 190:288CrossRefGoogle Scholar
  28. 28.
    Ilieva D, Jivov B, Bogachev G, Petkov Ch, Penkov I, Dimitriev Y (2001) J Noncryst Solids 283:195CrossRefGoogle Scholar
  29. 29.
    Karakassides MA, Saranti A, Koutselas I (2004) J Noncryst Solids 347:69CrossRefGoogle Scholar
  30. 30.
    Le Ssaout G, Simon P, Fayon F, Blin A, Vaills Y (2002) J Raman Spectrosc 33:740CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Adriana N. Regos
    • 1
    Email author
  • R. Ciceo Lucacel
    • 1
  • I. Ardelean
    • 1
  1. 1.Faculty of PhysicsBabes-Bolyai UniversityCluj NapocaRomania

Personalised recommendations