Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7289–7297 | Cite as

Effect of the precursor and reduction methods on the synthesis of supported Pt nanostructures in zeolite mordenite

  • Leonel Quiñones
  • María M. Martínez-IñestaEmail author
Article

Abstract

In this article, the effect of the metal precursor and of the reduction methods in the formation of anisotropic nanostructures using zeolite mordenite as template is explored. Reducing agents in the gas, liquid, and solid phase were studied in some cases at various temperatures. In general, HPtCl6 has a tendency to form anisotropic Pt structures but on the surface of the zeolite regardless of the reduction method, while Pt(NH3)4(NO3)2 lead to diverse Pt nanostructures inside the pores of the zeolite. It was evident that the anisotropy of the platinum nanostructures formed increased following the sequence of Gas < Liquid < Solid. Overall, the formation of Pt nanostructures that include dispersed nanoclusters, nanoparticles, multipods, nanoflowers, and nanowires obtained with the different reduction methods is discussed.

Keywords

Zeolite Mesoporous Silica Reduction Method Mordenite Soft Template 

Notes

Acknowledgements

This study was partially supported by the UPR-Mayaguez Synergistic Partnership for Research and Education on Functional Nanostructured Materials (PREM), the Institute of Functional Nanomaterials (IFN), and the UPR-NASA Center for Advanced Nanoscale Materials. The authors would like to thank Dr. Maxime Guinel for his support during the use of the Microscopy Center at the University of Puerto Rico, Rio Piedras.

References

  1. 1.
    Xia Y, Yang P (2003) Adv Mater 15:351CrossRefGoogle Scholar
  2. 2.
    Hrapovic S, Liu Y, Male KB, Luong JHT (2003) Anal Chem 76:1083CrossRefGoogle Scholar
  3. 3.
    Chen H, Yuan R, Chai Y, Wang J, Li W (2010) Biotechnol Lett 32:1401CrossRefGoogle Scholar
  4. 4.
    Yang H, Zhu Y (2007) Biosens Bioelectron 22:2989CrossRefGoogle Scholar
  5. 5.
    Zhu N, Chang Z, He P, Fang Y (2005) Anal Chim Acta 545:21CrossRefGoogle Scholar
  6. 6.
    Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Biosens Bioelectron 21:1125CrossRefGoogle Scholar
  7. 7.
    Yang M, Qu F, Lu Y, He Y, Shen G, Yu R (2006) Biomaterials 27:5944CrossRefGoogle Scholar
  8. 8.
    Fengli Q, Minghui Y, Guoli S, Ruqin Y (2007) Biosens Bioelectron 22:1749CrossRefGoogle Scholar
  9. 9.
    Sasaki M, Osada M, Sugimoto N, Inagaki S, Fukushima Y, Fukuoka A, Ichikawa M (1998) Microporous Mesoporous Mater 21:597CrossRefGoogle Scholar
  10. 10.
    Adhyapak PV, Karandikar P, Vijayamohanan K, Athawale AA, Chandwadkar AJ (2004) Mater Lett 58:1168CrossRefGoogle Scholar
  11. 11.
    Tiemann M (2007) Chem Mater 20:961CrossRefGoogle Scholar
  12. 12.
    Sakamoto Y, Fukuoka A, Higuchi T, Shimomura N, Inagaki S, Ichikawa M (2003) J Phys Chem B 108:853CrossRefGoogle Scholar
  13. 13.
    Chen A, Holt-Hindle P (2010) Chem Rev 110:3767CrossRefGoogle Scholar
  14. 14.
    Song Y, Garcia RM, Dorin RM, Wang H, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnut JA (2007) Nano Lett 7:3650CrossRefGoogle Scholar
  15. 15.
    Webb P, Orr C, Camp R, Olivier J, Yunes Y (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, GAGoogle Scholar
  16. 16.
    Napolskii KS, Barczuk PJ, Vassiliev SY, Veresov AG, Tsirlina GA, Kulesza PJ (2007) Electrochim Acta 52:7910CrossRefGoogle Scholar
  17. 17.
    Yang C-M, Sheu H-S, Chao K-J (2002) Adv Funct Mater 12:143CrossRefGoogle Scholar
  18. 18.
    Araki H, Fukuoka A, Sakamoto Y, Inagaki S, Sugimoto N, Fukushima Y, Ichikawa M (2003) J Mol Catal A: Chem 199:95CrossRefGoogle Scholar
  19. 19.
    Fukuoka A, Sakamoto Y, Higuchi T, Shimomura N, Ichikawa M (2006) J Porous Mater 13:231CrossRefGoogle Scholar
  20. 20.
    Fukuoka A, Higashimoto N, Sakamoto Y, Inagaki S, Fukushima Y, Ichikawa M (2002) Top Catal 18:73CrossRefGoogle Scholar
  21. 21.
    Fukuoka A, Higuchi T, Ohtake T, Oshio T, Kimura J-i, Sakamoto Y, Shimomura N, Inagaki S, Ichikawa M (2006) Chem Mater 18:337CrossRefGoogle Scholar
  22. 22.
    Fukuoka A, Higashimoto N, Sakamoto Y, Sasaki M, Sugimoto N, Inagaki S, Fukushima Y, Ichikawa M (2001) Catal Today 66:23CrossRefGoogle Scholar
  23. 23.
    Chen J, Herricks T, Geissler M, Xia Y (2004) J Am Chem Soc 126:10854CrossRefGoogle Scholar
  24. 24.
    Herricks T, Chen J, Xia Y (2004) Nano Lett 4:2367CrossRefGoogle Scholar
  25. 25.
    Sun S, Yang D, Villers D, Zhang G, Sacher E, Dodelet J (2008) Adv Mater 20:571CrossRefGoogle Scholar
  26. 26.
    Teng X, Yang H (2005) Nano Lett 5:885CrossRefGoogle Scholar
  27. 27.
    Chakarova K, Hadjiivanov K, Atanasova G, Tenchev K (2007) J Mol Catal A: Chem 264:270CrossRefGoogle Scholar
  28. 28.
    Yang Y-X, Bourgeois L, Zhao C, Zhao D, Chaffee A, Webley PA (2009) Microporous Mesoporous Mater 119:39CrossRefGoogle Scholar
  29. 29.
    Quiñones L, Grazul J, Martínez-Iñesta MM (2009) Mater Lett 63:2684CrossRefGoogle Scholar
  30. 30.
    Sakamoto Y, Fukuoka A, Higuchi T, Shimomura N, Inagaki S, Ichikawa M (2003) J Phys Chem B 108:853CrossRefGoogle Scholar
  31. 31.
    Kubanek P, Schmidt HW, Spliethoff B, Schüth F (2005) Microporous Mesoporous Mater 77:89CrossRefGoogle Scholar
  32. 32.
    Ismagilov ZR, Yashnik SA, Startsev AN, Boronin AI, Stadnichenko AI, Kriventsov VV, Kasztelan S, Guillaume D, Makkee M, Moulijn JA (2009) Catal Today 144:235CrossRefGoogle Scholar
  33. 33.
    Rivallan M, Seguin E, Thomas S, Lepage M, Takagi N, Hirata H, Thibault-Starzyk F (2010) Angew Chem Int Ed 49:785CrossRefGoogle Scholar
  34. 34.
    Rees L, Shen D (2001) In: Jansen J (ed) Studies in surface science and catalysis, vol 137. Elsevier Science, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leonel Quiñones
    • 1
  • María M. Martínez-Iñesta
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentUniversity of Puerto RicoMayagüezUSA

Personalised recommendations