Journal of Materials Science

, Volume 46, Issue 22, pp 7275–7278 | Cite as

Thermoluminescence and lyoluminescence in γ-ray irradiated and Ce3+-doped YCa4O(BO3)3 phosphors

  • G. C. Mishra
  • A. K. Upadhyay
  • R. S. Kher
  • S. J. DhobleEmail author


YCa4O(BO3)3 crystal having various concentration of Ce ions were synthesized by solid-state diffusion technique. XRD pattern of the sample confirmed the formation of the sample. Thermoluminescence (TL) and lyoluminescence (LL) of the γ-ray-irradiated sample were recorded. Two distinct peaks around 160 and 277 °C were observed in TL glow curves. TL intensity increased with increasing dopant concentration up to 2 mol%. A single sharp peak was observed in the LL glow curve of the sample. It was found that both TL and LL increased almost linearly with γ-ray doses up to 1.5 kGy. Photoluminescence (PL) of the sample was recorded to find the role of rare earth ion doped in YCa4O(BO3)3. PL emission spectrum showed two peaks lying very close to each other around 390 nm which are characteristics of 5d → 4f transition of Ce3+ ions. When LL of samples was recorded after removing the TL peaks it did not show any emission. This indicates that emission centres responsible for TL are also responsible for LL.


Glow Curve Dilute Hydrochloric Acid Li2B4O7 Borate Compound Active Luminescent Centre 


  1. 1.
    Mckeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, Cambridge, p 127Google Scholar
  2. 2.
    Li J, Hao JQ, Zhang CX, Tang Q, Zhang YL, Su Q, Wang S (2004) Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 222:577CrossRefGoogle Scholar
  3. 3.
    Furetta C, Prokic M, Salamon R, Prokic V, Kitis G (2001) Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 456:411CrossRefGoogle Scholar
  4. 4.
    Li J, Hao JQ, Li CY, Zhang CX, Tang Q, Zhang YL, Su Q, Wang SB (2005) Radiat Meas 39:229CrossRefGoogle Scholar
  5. 5.
    Furetta C, Kitis G, Weng PS, Chu TC (1999) Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 420:441CrossRefGoogle Scholar
  6. 6.
    Liu LY, Zhang YL, Hao JQ, Li CY, Tang Q, Zhang CX, Su Q (2005) Phys Status Solidi A Appl Res 202:2800CrossRefGoogle Scholar
  7. 7.
    Liu LY, Zhang YL, Hao JQ, Li CY, Tang Q, Zhang CX, Su Q (2006) Mater Lett 60:639CrossRefGoogle Scholar
  8. 8.
    Norrestam R, Nygran J-O Bovin M et al (1992) Chem Mater 4:734CrossRefGoogle Scholar
  9. 9.
    Widdmann E, Schmidt GC (1895) Annal Phys Chem 604:54Google Scholar
  10. 10.
    Dhoble SJ, Moharil SV (1992) J Lumin 51:209CrossRefGoogle Scholar
  11. 11.
    Dhoble SJ (2002) Radiat Protec Dosim 100(1–4):285CrossRefGoogle Scholar
  12. 12.
    Kher RS, Upadhyay AK, Dhoble SJ, Khokhar MSK (2008) Ind J Pure Appl Phys 46:607Google Scholar
  13. 13.
    Upadhyay A, Dhoble SJ, Rai R, Kher RS (2008) Nucl Instr Meth Phys Res B 266:2549CrossRefGoogle Scholar
  14. 14.
    Yosida T, Yamaga M, Lee D, Jhan TP, Gallagher HG, Henderson B (1997) J Lumin Cond Matter 9(18):3733CrossRefGoogle Scholar
  15. 15.
    Porwal NK, Kadam RM, Sheshagiri TK, Natrajan V, Dhobale AR, Page AG (2005) Radiat Measure 40(1):69CrossRefGoogle Scholar
  16. 16.
    Ahnstrom G (1965) Acta Chem Scand 19:300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. C. Mishra
    • 1
  • A. K. Upadhyay
    • 1
  • R. S. Kher
    • 2
  • S. J. Dhoble
    • 3
    Email author
  1. 1.Department of Applied PhysicsO. P. Jindal Institute of TechnologyRaigarhIndia
  2. 2.Department of PhysicsE. R. R. Government P. G. Science CollegeBilaspurIndia
  3. 3.Department of PhysicsR. T. M. Nagpur UniversityNagpurIndia

Personalised recommendations