Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7247–7252 | Cite as

In situ high temperature X-ray diffraction study of UO2 nanoparticles

  • R. Jovani Abril
  • R. EloirdiEmail author
  • D. Bouëxière
  • R. Malmbeck
  • J. Spino
Article

Abstract

Nanocrystallites of UO2 with a size of 3–5 nm were studied in situ with high temperature X-ray diffraction (HT-XRD), thermogravimetry (TGA), and differential thermal analysis. The evolution of the crystallite size, the lattice parameter, and the strain were determined from ambient temperature up to 1200 °C. Below 700 °C, a weak effect on the crystallite size occurs and it remains below 10 nm, while a strong expansion of the lattice parameter is measured. The strain decreases with temperature and is completely released at 700 °C. Above this temperature, begins the sintering of the nanocrystallites reaching a size of about 80 nm at 1200 °C. The weight loss curve observed in TGA is assigned to the desorption of water molecules and is correlated with the strain evolution observed by HT-XRD. The linear thermal expansion and the thermal expansion coefficient at 800 °C are 1.3% and 16.9 × 10−6 °C−1, respectively.

Keywords

Crystallite Size Differential Thermal Analysis Curve Nanocrystalline Material Lattice Expansion Linear Thermal Expansion 

Notes

Acknowledgements

We are grateful to H. Hein for his technical support with TGA–DTA measurements. R. Jovani Abril acknowledges the European Commission for support in the frame of the program “Training and Mobility of Researchers.”

References

  1. 1.
    Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Phys Rev Lett 77:99CrossRefGoogle Scholar
  2. 2.
    Muccillo ENS, Rocha RA, Tadokoro SK, Rey JFQ, Muccillo R, Steil MC (2004) J Electroceram 13:609CrossRefGoogle Scholar
  3. 3.
    Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Phys Rev B 51:6135CrossRefGoogle Scholar
  4. 4.
    Moon KS, Dong H, Maric R, Pothukuchi S, Hunt A, Li Y, Wong CP (2005) J Electron Mater 34:168CrossRefGoogle Scholar
  5. 5.
    Boswell FWC (1951) Proc Phys Soc A 64:465CrossRefGoogle Scholar
  6. 6.
    Fukuhara M (2003) Phys Lett A 313:427CrossRefGoogle Scholar
  7. 7.
    Qi WH, Wang MP, Su YC (2002) J Mater Sci Lett 21:877CrossRefGoogle Scholar
  8. 8.
    Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Appl Phys Lett 87:133113CrossRefGoogle Scholar
  9. 9.
    Fievet F, Germi P, De Bergevin F, Figlarz M (1979) J Appl Cryst 12:387CrossRefGoogle Scholar
  10. 10.
    Li G, Boerico-Goates J, Woodfield BF (2004) Appl Phys Lett 85:2059CrossRefGoogle Scholar
  11. 11.
    Cimino A, Porta P, Valigi M (1965) J Am Ceram Soc 49:152CrossRefGoogle Scholar
  12. 12.
    Solliard C, Fludi M (1985) Surf Sci 156:487CrossRefGoogle Scholar
  13. 13.
    Vermaak JS, Kuhlmann-Wilsdorf D (1968) J Phys Chem 72:4150CrossRefGoogle Scholar
  14. 14.
    Wasserman HJ, Vermaak JS (1972) Surf Sci 32:168CrossRefGoogle Scholar
  15. 15.
    Sun CQ (1999) J Phys 11:4801Google Scholar
  16. 16.
    Wei Z, Xia T, Ma J, Feng W, Dai J, Wang Q, Yan P (2007) Mater Charact 58:1019CrossRefGoogle Scholar
  17. 17.
    Li G, Li L, Boerico-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8659CrossRefGoogle Scholar
  18. 18.
    Rousseau G, Fattahi M, Grambow B, Desgranges L, Boucher F, Ouvrard G, Millot N, Niepce JC (2009) J Solid State Chem 182:2591CrossRefGoogle Scholar
  19. 19.
    Kim HS, Park CH, Park CJ, Choi CB, Jung SH, Suk HC (1994) J Korean Nucl Soc 26:190Google Scholar
  20. 20.
    Amaya M, Nakamura J, Fuketa T (2008) J Nucl Sci Technol 45:244CrossRefGoogle Scholar
  21. 21.
    Santa Cruz H, Spino J, Grathwohl G (2008) J Eur Ceram Soc 28:1783CrossRefGoogle Scholar
  22. 22.
    Cullity BD (1978) In: Elements of X-ray diffraction, 2nd edn. Addison Wesley, ReadingGoogle Scholar
  23. 23.
    Gronvold F (1955) J Inorg Nucl Chem 1:357CrossRefGoogle Scholar
  24. 24.
    Nickel H (1966) Nucleonik 8:366Google Scholar
  25. 25.
    Martin DG (1988) J Nucl Mater 152:94CrossRefGoogle Scholar
  26. 26.
    Kittel C (1996) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  27. 27.
    Sui ML, Lui K (1995) Nanostruct Mater 6:651CrossRefGoogle Scholar
  28. 28.
    Wagner M (1992) Phys Rev B 45:635CrossRefGoogle Scholar
  29. 29.
    Klam HJ, Hahn H, Gleiter H (1987) Acta Metall 35:2101CrossRefGoogle Scholar
  30. 30.
    Banerjee R, Sperling EA, Thompson GB, Fraser HL (2003) Appl Phys Lett 82:4250CrossRefGoogle Scholar
  31. 31.
    Zhao YH, Sheng HW, Lu K (2001) Acta Metall 49:365Google Scholar
  32. 32.
    Wang Y, Zhao H, Yihua Hu, Ye C, Zhang L (2007) J Cryst Growth 305:8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Jovani Abril
    • 1
  • R. Eloirdi
    • 1
    Email author
  • D. Bouëxière
    • 1
  • R. Malmbeck
    • 1
  • J. Spino
    • 1
  1. 1.European Commission, Joint Research Centre Institute for Transuranium ElementsKarlsruheGermany

Personalised recommendations