Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7240–7246 | Cite as

Fabrication and characterization of electrospun Ag doped TiO2 nanofibers for photocatalytic reaction

  • Ju-Young ParkEmail author
  • Kyung-Jun Hwang
  • Jae-Wook Lee
  • In-Hwa Lee
Article

Abstract

Titanium dioxide is one of the best semiconductor photocatalysts available for photocatalytic reaction of dye pollutants. To prevent the recombination caused by the relatively low photocatalytic efficiency, Ag doped TiO2 nanofiber was prepared by electrospinning method. The photocatalysts (pure TiO2 nanofiber and Ag doped TiO2 nanofiber) were characterized by FE-SEM, XRD, XPS, and PL analysis. These photocatalysts were evaluated by the photodecomposition of methylene blue under UV light. Ag doped TiO2 nanofiber was found to be more efficient than pure TiO2 fiber for photocatalytic degradation of methylene blue. The photocatalytic degradation rate was applied to pseudo-first-order equation. The degradation of Ag doped TiO2 nanofiber was significantly higher than the degradation rate of pure TiO2 nanofiber. Activation energy was calculated by applying Arrhenius equation from the rate constant of photocatalytic reaction. The activation energies for the pure TiO2 nanofibers calcined at 400 and 500 °C were 16.981 and 12.187 kJ/mol and those of Ag doped TiO2 nanofibers were 18.317 and 7.977 kJ/mol, respectively.

Keywords

TiO2 Methylene Blue Field Emission Scanning Electron Microscopy Photocatalytic Degradation Calcination Temperature 

References

  1. 1.
    Sadek AZ, Partridge JG, McCulloch DG, Li YX, Yu XF, Wlodarski W, Kalantar-zadeh K (2009) Thin Solid Films 518:1294CrossRefGoogle Scholar
  2. 2.
    Steele JJ, Taschuk MT, Brett MJ (2009) Sens Actuators B 140:610CrossRefGoogle Scholar
  3. 3.
    Ganapathy V, Karunagaran B, Rhee SW (2010) J Power Source 195:5138CrossRefGoogle Scholar
  4. 4.
    Kim DH, Roy PM, Lee KY, Schmuki P (2010) Electrochem Commun 12:574CrossRefGoogle Scholar
  5. 5.
    Wang S, Wu X, Qin W, Jiang Z (2008) Mater Lett 62:1078CrossRefGoogle Scholar
  6. 6.
    Malagutti AR, Mourao HA, Garbin JR, Ribeiro C (2009) Appl Catal B Environ 90:205CrossRefGoogle Scholar
  7. 7.
    Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1CrossRefGoogle Scholar
  8. 8.
    Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A: Chem 129:257CrossRefGoogle Scholar
  9. 9.
    Libanori R, Giraldi TR, Longo E, Leite ER, Ribeiro C (2009) J Sol-Gel Sci Technol 49:95CrossRefGoogle Scholar
  10. 10.
    Wang H, Wu Y, Xu BQ (2005) Appl Catal B Environ 59:139CrossRefGoogle Scholar
  11. 11.
    Xin B, Jing L, Ren Z, Wang B, Fu H (2005) J Phys Chem B 109:2805CrossRefGoogle Scholar
  12. 12.
    Chen Y, Sun Z, Yang Y, Ke Q (2001) J Photochem Photobiol A 142:85CrossRefGoogle Scholar
  13. 13.
    Yang JC, Kim YC, Shul YG, Hin CH, Lee TK (1997) Appl Surf Sci 121:525CrossRefGoogle Scholar
  14. 14.
    Chang CC, Chen JY, Hsu TL, Ling CK, Chan CC (2008) Thin Solid Films 516:1743CrossRefGoogle Scholar
  15. 15.
    Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ (2006) Appl Catal A Gen 306:120CrossRefGoogle Scholar
  16. 16.
    Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A 189:258CrossRefGoogle Scholar
  17. 17.
    Li D, Xia Y (2003) Nano Lett 3:555CrossRefGoogle Scholar
  18. 18.
    Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Appl Mater Interfaces 1:1140CrossRefGoogle Scholar
  19. 19.
    Nuansing W, Ninumuang S, Jarenboon W, Maensiri S, Seraphin S (2006) Mater Sci Eng B 131:147CrossRefGoogle Scholar
  20. 20.
    Chandrasekar R, Zhang L, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44:1198. doi: https://doi.org/10.1007/s10853-008-3201-1 CrossRefGoogle Scholar
  21. 21.
    He T, Zhou Z, Xu W, Ren F, Ma H, Wang J (2009) Polymer 50:3031CrossRefGoogle Scholar
  22. 22.
    Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP (2009) Mater Res Bull 44:312CrossRefGoogle Scholar
  23. 23.
    Doh SJ, Kim C, Lee SG, Lee SJ, Kim HY (2008) J Hazard Mater 154:118CrossRefGoogle Scholar
  24. 24.
    Ding B, Kim HY, Kim CK, Khil MS, Park SJ (2003) Nanotechnology 14:532CrossRefGoogle Scholar
  25. 25.
    Amores JMG, Escribano VS, Busca G (1995) J Mater Chem 5:1245CrossRefGoogle Scholar
  26. 26.
    Amores JMG, Escribano VS, Busca G, Lorenzelli V (1994) J Mater Chem 4:965CrossRefGoogle Scholar
  27. 27.
    Cho H, Yun YU, Xingfang HU, Larbot A (2003) J Eur Ceram Soc 23:1457CrossRefGoogle Scholar
  28. 28.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJ, pp 167–171Google Scholar
  29. 29.
    Zhang L, Mo CM (1995) Nanostruct Mater 6:831CrossRefGoogle Scholar
  30. 30.
    Zhu YC, Ding CX (1999) J Solid State Chem 145:711CrossRefGoogle Scholar
  31. 31.
    Pruden AL, Ollis DF (1983) J Catal 82:404CrossRefGoogle Scholar
  32. 32.
    Ollis DF (1985) Environ Sci Technol 19:480CrossRefGoogle Scholar
  33. 33.
    Wu CH, Yu CH (2009) J Hazard Mater 169:117Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ju-Young Park
    • 1
    • 2
    • 3
    Email author
  • Kyung-Jun Hwang
    • 4
  • Jae-Wook Lee
    • 4
  • In-Hwa Lee
    • 2
  1. 1.Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Environmental Engineering, BK21 Team for Biohydrogen ProductionChosun UniversityGwangjuRepublic of Korea
  3. 3.Southwestern Research Institute of Green Energy TechnologyMokpo-SiRepublic of Korea
  4. 4.Department of Chemical and Biochemical EngineeringChosun UniversityGwangjuRepublic of Korea

Personalised recommendations