Journal of Materials Science

, Volume 46, Issue 22, pp 7228–7239 | Cite as

Ultrasonic sound speed analysis of hydrating calcium sulphate hemihydrate

  • A. C. J. de KorteEmail author
  • H. J. H. Brouwers


This article focuses on the hydration, and associated microstructure development, of β-hemihydrate to dihydrate (gypsum). The sound velocity is used to quantify the composition of the fresh slurry as well as the hardening and hardened—porous—material. Furthermore, an overview of available hydration kinetic and volumetric models for gypsum is addressed. The presented models predict the sound velocity through slurries and hardened products. These states correspond to the starting and ending times of the hydration process. The present research shows that a linear relation between the amount of hydration-product (gypsum) formed and sound velocity (Smith et al., J Eur Ceram Soc 22(12):1947, 2002) can be used to describe this process. To this end, the amount of hydration-product formed is determined using the equations of Schiller (J Appl Chem Biotechnol 24(7):379, 1974) for the hydration process and of Brouwers (A hydration model of Portland cement using the work of Powers and Brownyard, 2011) for the volume fractions of binder, water and hydration products during the hydration process.


Gypsum Sound Velocity Void Fraction Sound Speed Hemihydrate 



Volume fraction in water


Sound velocity


Water/binder ratio (m/m)





Di-hydrate (gypsum)






Hardened product











Hydration degree


Specific density


Volume fraction



The authors wish to express their sincere thanks to Prof. Dr.-Ing. habil. C.S. Grosse and Dipl.-Ing. F. Lehmann of Non-destructive Testing Lab, Technical University of Munich, Germany, for performing the ultrasonic tests, the European Commission (I-SSB Project, Proposal No. 026661-2) and the following sponsors of the research group: Bouwdienst Rijkswaterstaat, Graniet-Import Benelux, Kijlstra Betonmortel, Struyk Verwo, Insulinde, Enci, Provincie Overijssel, Rijkswaterstaat Directie Zeeland, A&G Maasvlakte, BTE, Alvon Bouwsystemen, V.d. Bosch Beton, Selor, Twee “R” Recyling, GMB, Schenk Concrete Consultancy, De Mobiele Fabriek, Creative Match, Intron, Geochem Research and Icopal (chronological order of joining).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Robeyst N, Gruyaert E, Grosse CU, De Belie ND (2008) Cem Concr Res 38(10):1169CrossRefGoogle Scholar
  2. 2.
    Reinhardt HW, Grosse CU (2004) Constr Build Mater 18(3):145CrossRefGoogle Scholar
  3. 3.
    De Belie ND, Grosse CU, Kurz J, Reinhardt HW (2005) Cem Concr Res 35(11):2087CrossRefGoogle Scholar
  4. 4.
    Ylmén R, Jäglid U, Steenari B-M, Panas I (2009) Cem Concr Res 39(5):433CrossRefGoogle Scholar
  5. 5.
    Reinhardt HW, Grosse CU, Herb A, Weiler B, Schmidt G. Verfahren zur Untersuchung eines erstarrenden und/oder erhärtenden Werkstoffs mittels Ultraschall, U.S. Patent 198 56 259.41999Google Scholar
  6. 6.
    Schiller K (1974) J Appl Chem Biotechnol 24(7):379CrossRefGoogle Scholar
  7. 7.
    Sayers CM, Dahlin A (1993) Adv Cem Based Mater 1(1):12CrossRefGoogle Scholar
  8. 8.
    Robeyst N, Grosse CU, De Belie N (2009) Cem Concr Res 39(10):868CrossRefGoogle Scholar
  9. 9.
    Losso M, Viveiros E (2005) Sound insulation of gypsum board in practice. Presented at the 2005 Congress and Exposition on Noise Control Engineering, Rio de Janeiro, Brazil, 2005Google Scholar
  10. 10.
    Harker AH, Temple JAG (1988) J Phys D 21(11):1576CrossRefGoogle Scholar
  11. 11.
    Austin JC, Holmes AK, Tebbutt JS, Challis RE (1996) Ultrasonics 34(2–5):369CrossRefGoogle Scholar
  12. 12.
    Gómez Álvarez-Arenas TE, Elvira Segura L, Riera Franco de Sarabia E (2002) Ultrasonics 39(10):715CrossRefGoogle Scholar
  13. 13.
    Hoyos M, Bacri JC, Martin J, Salin D (1994) Phys Fluids 6(12):3809CrossRefGoogle Scholar
  14. 14.
    Landau L (1986) Theory of elasticity, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  15. 15.
    Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci 31(6):1643. doi: CrossRefGoogle Scholar
  16. 16.
    Roth DJ, Stang DB, Swickard SM, DeGuire MR (1990) Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials. NASA, Cleveland, OHGoogle Scholar
  17. 17.
    Dalui SK, Roychowdhury M, Phani KK (1996) J Mater Sci 31(5):1261. doi: CrossRefGoogle Scholar
  18. 18.
    Ye G (2003) Experimental study and numerical simulation of the development of the microstructure and permeability of cementious materials. PhD-Thesis, Delft University of Technology, The NetherlandsGoogle Scholar
  19. 19.
    Brouwers HJH (2011) A hydration model of Portland cement using the work of Powers and Brownyard. Portland Cement Association, Skokie, ILGoogle Scholar
  20. 20.
    Schiller KK (1958) In: Walton WH (ed) Mechanical properties of non-brittle materials. Butterworths Sci Pub, London, pp 35–49Google Scholar
  21. 21.
    Phani KK, Niyogi SK, Maitra AK, Roychaudhury M (1986) J Mater Sci 21(12):4335. doi: CrossRefGoogle Scholar
  22. 22.
    Yu QL, Brouwers HJH (2011) Constr Build Mater 25(7):3149CrossRefGoogle Scholar
  23. 23.
    Smith A, Chotard T, Gimet-Breart N, Fargeot D (2002) J Eur Ceram Soc 22(12):1947CrossRefGoogle Scholar
  24. 24.
    Schiller K (1962) J Appl Chem 12(3):135CrossRefGoogle Scholar
  25. 25.
    Schiller K (1963) J Appl Chem 13(12):572CrossRefGoogle Scholar
  26. 26.
    Schiller K (1965) Nature 205:1208CrossRefGoogle Scholar
  27. 27.
    Ridge MJ, Surkevicius H (1961) J Appl Chem 11(11):420CrossRefGoogle Scholar
  28. 28.
    Ridge MJ, Surkevicius H (1962) J Appl Chem 12(6):246CrossRefGoogle Scholar
  29. 29.
    Ridge MJ, Surkevicius H (1966) J Appl Chem 16(3):78CrossRefGoogle Scholar
  30. 30.
    Beretka J, van der Touw JW (1989) J Chem Technol Biotechnol 44(1):19CrossRefGoogle Scholar
  31. 31.
    Fujii K, Kondo W (1986) J Chem Soc Dalton Trans 4:729CrossRefGoogle Scholar
  32. 32.
    Singh NB, Middendorf B (2007) Prog Cryst Growth Charact Mater 53(1):57CrossRefGoogle Scholar
  33. 33.
    Hunger M, Brouwers HJH (2009) Cem Concr Compos 31(1):39CrossRefGoogle Scholar
  34. 34.
    Hunger M (2010) An integral design concept for ecological self-compacting concrete. PhD Thesis, Eindhoven University of Technology, Eindhoven, The NetherlandsGoogle Scholar
  35. 35.
    Grosse U, Lehmann F (2008) Ultrasound measurements of the hydration rate of hemihydrates. Materialprufungsanstalt, Universitat Stuttgart, Stuttgart, GermanyGoogle Scholar
  36. 36.
    Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca Raton, FLGoogle Scholar
  37. 37.
    Schofield PF, Stretton IC, Knight KS, Hull S (1997) Physica B 234–236:942CrossRefGoogle Scholar
  38. 38.
    Meille S, Garboczi EJ (2001) Model Simul Mater Sci Eng 9(5):371CrossRefGoogle Scholar
  39. 39.
    Haecker CJ et al (2005) Cem Concr Res 35(10):1948CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Civil Engineering, Faculty of Engineering TechnologyUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Architecture, Building and PlanningEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations