Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 7039–7045 | Cite as

Experimental determination and thermodynamic modeling of phase equilibria in the Cu–Cr system

  • Z. M. Zhou
  • J. GaoEmail author
  • F. Li
  • Y. P. Wang
  • M. Kolbe
Article

Abstract

Liquidus temperatures in the Cu–Cr system at compositions of 10.0–72.7 at.% Cr were determined using electromagnetic levitation melting. The present data agree with the prediction of a recent thermodynamic study of the system for compositions up to 20.0 at.% Cr. However, they show large and positive deviations for other compositions. Microscopic studies reveal that compositions between 10.0 and 50.5 at.% Cr solidified into a dendritic microstructure, whereas those between 55.9 and 72.7 at.% Cr solidified into a droplet-shaped microstructure. The microstructure of the latter type provides direct evidence for the existence of a stable miscibility gap over Cr-rich compositions. Phase equilibria in the Cu–Cr system were calculated using the CALPHAD method. A novel phase diagram was proposed for the Cu–Cr system, which shows a monotectic reaction between compositions of 50.8 and 83.2 at.% Cr at an invariant temperature of 2020 ± 22 K. The novel phase diagram has reduced the discrepancies between the literature data.

Keywords

Liquidus Temperature CALPHAD Method Electromagnetic Levitation Monotectic Temperature Measured Liquidus Temperature 

Notes

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (50571025 and 50871078) and by the Ministry of Education (NCET05-0292). The authors thank Dr. H. Nagaumi for providing high purity chromium material. The authors also thank Dr. Jingbo Li for discussions. The authors are indebted to Mr. G. Luo for his assistance in experimental work.

References

  1. 1.
    Slade PG (1994) IEEE Trans Compon Packag Manuf Technol 17:96CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Hindrichs G (1908) Z Anorg Chem 59:414CrossRefGoogle Scholar
  4. 4.
    Siedschlag E (1923) Z Anorg Chem 131:173CrossRefGoogle Scholar
  5. 5.
    Leonov M, Bochvar N, Ivanchenko V (1986) Dokl Akad Nauk SSSR 290:888Google Scholar
  6. 6.
    Müller R (1988) Siemens Forsch Entwickl Ber 1:105Google Scholar
  7. 7.
    Kuznetsov GM, Fedorov FN, Rodnyanskayz AL (1977) Sov Non-Ferrous Met Res 3:104Google Scholar
  8. 8.
    Chakrabarti DJ, Laughlin DE (1984) Bull Alloy Phase Diagr 5:59CrossRefGoogle Scholar
  9. 9.
    Saunders N (1987) Mater Sci Technol 3:671CrossRefGoogle Scholar
  10. 10.
    Hämäläinen M, Jääskeläinen K, Luoma R, Nuotio M, Taskinen P, Teppo O (1990) Calphad 14:125CrossRefGoogle Scholar
  11. 11.
    Zeng K, Hämäläinen M (1995) Calphad 19:93CrossRefGoogle Scholar
  12. 12.
    Michaelsen C, Gente C, Bormann R (1997) J Mater Res 12:1463CrossRefGoogle Scholar
  13. 13.
    Turchanin MA (2006) Powder Metall Metal Ceram 45:457CrossRefGoogle Scholar
  14. 14.
    Jacob KT, Priya S, Waseda Y (2000) Z Metallkd 91:594Google Scholar
  15. 15.
    Li D, Robinson MB, Rathz TJ (2000) J Phase Equilib 21:136CrossRefGoogle Scholar
  16. 16.
    Zhou ZM, Gao J, Li F, Zhang YK, Wang YP, Kolbe M (2009) J Mater Sci 44:3793. doi: https://doi.org/10.1007/s10853-009-3511-y CrossRefGoogle Scholar
  17. 17.
    Adachi M, Schick M, Brillo J, Egry I, Watanabe M (2010) J Mater Sci 45:2002. doi: https://doi.org/10.1007/s10853-009-4149-5 CrossRefGoogle Scholar
  18. 18.
    Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64. doi: https://doi.org/10.1007/s10853-008-3115-y CrossRefGoogle Scholar
  19. 19.
    Anderson CD, Hofmeister WH, Bayuzick RJ (1993) Metall Trans A 24:61CrossRefGoogle Scholar
  20. 20.
    Dinsdale AT (1991) Calphad 15:317CrossRefGoogle Scholar
  21. 21.
    Verhoeven JD, Gibson ED (1978) J Mater Sci 13:1576. doi: https://doi.org/10.1007/BF00553214 CrossRefGoogle Scholar
  22. 22.
    Cooper KP, Ayers JD, Malzahn Kampe JC, Feng CR, Locci IE (1991) Mater Sci Eng A 142:221CrossRefGoogle Scholar
  23. 23.
    Sun Z, Zhang C, Zhu Y, Zhang C, Yang Z, Ding B, Song X (2003) J Alloys Compd 361:165CrossRefGoogle Scholar
  24. 24.
    Zhou ZM, Wang YP, Gao J, Kolbe M (2005) Mater Sci Eng A 398:318CrossRefGoogle Scholar
  25. 25.
    Gao J, Wang YP, Zhou ZM, Kolbe M (2007) Mater Sci Eng A 449–451:654CrossRefGoogle Scholar
  26. 26.
    One K, Nishi S, Oishi T (1984) Trans Jpn Inst Mater 11:810CrossRefGoogle Scholar
  27. 27.
    Timberg L, Toguri JM (1982) J Chem Thermodyn 14:193CrossRefGoogle Scholar
  28. 28.
    Andersson JO (1985) Int J Thermodyn 6:411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. M. Zhou
    • 1
    • 2
    • 5
  • J. Gao
    • 1
    Email author
  • F. Li
    • 1
  • Y. P. Wang
    • 2
    • 3
  • M. Kolbe
    • 4
  1. 1.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education)Northeastern UniversityShenyangChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.School of ScienceXi’an Jiaotong UniversityXi’anChina
  4. 4.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft-und Raumfahrt (DLR)KölnGermany
  5. 5.Department of Materials Science and EngineeringChongqing University of TechnologyChongqingChina

Personalised recommendations