Journal of Materials Science

, Volume 46, Issue 21, pp 7012–7025 | Cite as

Liquid phase sintered Cu–In composite solders for thermal interface material and interconnect applications

  • J. Liu
  • P. Kumar
  • I. DuttaEmail author
  • R. Raj
  • R. Sidhu
  • M. Renavikar
  • R. Mahajan


This study reports on the processing and characterization of composite solders produced by liquid phase sintering, which comprise a high-melting phase such as Cu embedded in a matrix of a low-melting phase such as In. These solders combine higher electrical/thermal conductivities with high mechanical compliance, and are suitable for a range of next-generation thermal interface material and interconnect applications. After considering a range of compositions, a solder with 60 volume percent In was found to possess the requisite combination of compliance and conductivity. A thin interfacial Au layer was utilized for the dual purposes of (a) enhancing the wetting between Cu and In, and (b) reducing interfacial reaction between Cu and In to form coarse intermetallic compounds (IMC) scallops, which adversely affect both mechanical and electrical/thermal properties. The Au layer increased the thermal conductivity of the solder by a factor of ~2 while reducing the yield strength to make the solder more compliant. The effects of particle size, shape, and volume fraction are discussed, and a simple model is utilized to explain the trends in the mechanical and the thermal properties.


Yield Strength Electrical Resistivity Solder Joint Contact Resistance Liquid Phase Sinter 



This research was supported by a grant from INTEL Corporation through the Strategic Research Segment (SRS) program. Partial support from NSF-CMMI-0709506 and NSF-DMR-0939392 is also acknowledged.


  1. 1.
    Dutta I, Raj R, Kumar P, Chen T, Nagaraj CM, Liu J, Renavikar M, Wakharkar V (2009) J Electron Mater 38:2735CrossRefGoogle Scholar
  2. 2.
    Liu J, Rottmann P, Dutta S, Kumar P, Raj R, Renavikar M, and Dutta I (2009) In: Proceedings of the 12th electronics packaging technology conference, EPTC, IEEE, Singapore pp 506–511Google Scholar
  3. 3.
    Kumar P, Dutta I, Raj R, Renavikar M, and Wakharkar V (2008) In: Proceeding of conference on thermal issues in emerging technologies (ThETA 2), IEEE, Cairo, pp 339–346Google Scholar
  4. 4.
    Omori M, Takei H (1988) J Mater Sci 23:3744. doi: CrossRefGoogle Scholar
  5. 5.
    Froschauer L, Fulrath RM (1976) J Mater Sci 10:142. doi: CrossRefGoogle Scholar
  6. 6.
    Kingery WD, Niki E, Narasimhan MD (1961) J Am Ceram Soc 44:29CrossRefGoogle Scholar
  7. 7.
    Northcutt WG, Ridge O and Snyder WB (1976) US Patent 3,979,234, 7 Sept 1976Google Scholar
  8. 8.
    Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG (2004) Appl Phys Lett 84:1731CrossRefGoogle Scholar
  9. 9.
    Corker DL, Whatmore RW, Ringgaard E, Wolny WW (2000) J Eur Ceram Soc 20:2039CrossRefGoogle Scholar
  10. 10.
    German RM, Suri P, Park SJ (2009) J Mater Sci 44:1. doi: CrossRefGoogle Scholar
  11. 11.
    Qiao X, Corbin SF (2000) Mater Sci Eng A283:38CrossRefGoogle Scholar
  12. 12.
    Palmer MA, Erdman NS, McCall DA (1999) J Electron Mater 28:1189CrossRefGoogle Scholar
  13. 13.
    Gallagher C, Matijasevic G and Maguire JF (1997) In: Proceedings of the 54th Electronic Components and Technology Conference (ECTC), San JoseGoogle Scholar
  14. 14.
    Shearer C, Shearer B, Matijasevic G, Gandhi P (1999) J Electron Mater 28:1319CrossRefGoogle Scholar
  15. 15.
    Every AG, Tzou Y, Hasselman DPH, Raj R (1992) Acta Metall Mater 40:123CrossRefGoogle Scholar
  16. 16.
    Kim DG, Yoon JW, Lee CY, Jung SB (2003) Mater Trans 44:72CrossRefGoogle Scholar
  17. 17.
    Yu SL, Wang SS, Chuang TH (2002) J Electron Mater 31:488CrossRefGoogle Scholar
  18. 18.
    Liu HS, Liu XJ, Wang CP, Ohnuma I, Kainuma R, Jin ZP, Ishida K (2002) J Phase Equilib 23:409CrossRefGoogle Scholar
  19. 19.
    Pan D, Marks RA, Dutta I, Jadhav S (2004) Rev Sci Instrum 75:5244CrossRefGoogle Scholar
  20. 20.
    Miller WS, Humphreys (1991) Scripta Metall Mater 25:33CrossRefGoogle Scholar
  21. 21.
    Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175CrossRefGoogle Scholar
  22. 22.
    Chawla KK, Metzger M (1972) J Mater Sci 7:34. doi: CrossRefGoogle Scholar
  23. 23.
    Ashby MF (1966) Phil Mag 14:1157CrossRefGoogle Scholar
  24. 24.
    Ashby MF (1970) Phil Mag 21:399CrossRefGoogle Scholar
  25. 25.
    Sekine H, Chen R (1995) Composites 26:183CrossRefGoogle Scholar
  26. 26.
    Simic V, Marinkovic Z (1980) J Less-Common Met 72:133CrossRefGoogle Scholar
  27. 27.
    Roy R, Pradhan SK, De M, Sen SK (1993) Thin Solid Films 229:140CrossRefGoogle Scholar
  28. 28.
    Rajasekharan TP, Schubert K (1981) Z Metallkd 72:275Google Scholar
  29. 29.
    Jain KC, Ellner M, Schubert K (1972) Z Metallkd 63:456Google Scholar
  30. 30.
    Okamoto H (1993) J Phase Equilib 14:532Google Scholar
  31. 31.
    Liu HS, Cui Y, Ishida K, Jin ZP (2003) J Phase Equilib 27:27Google Scholar
  32. 32.
    Liu YM, Chuang TH (2000) J Electron Mater 29:405CrossRefGoogle Scholar
  33. 33.
    Jan JP, Pearson WB (1963) Philos Mag 8:279CrossRefGoogle Scholar
  34. 34.
    Nakano T, Suzuki T, Ohnuki N, Baba S (1998) Thin Solid Films 334:192CrossRefGoogle Scholar
  35. 35.
    Ma H, Suhling JC (2009) J Mater Sci 44:1141. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Liu
    • 1
  • P. Kumar
    • 1
  • I. Dutta
    • 1
    Email author
  • R. Raj
    • 2
  • R. Sidhu
    • 3
  • M. Renavikar
    • 3
  • R. Mahajan
    • 3
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA
  3. 3.Assembly Technology DevelopmentINTEL CorporationChandlerUSA

Personalised recommendations