Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6960–6963 | Cite as

Effect of alkalinity on the hydrothermal synthesis of Li2ZrO3 nanotube arrays

  • Limin Guo
  • Xiaohui WangEmail author
  • Shaopeng Zhang
  • Caifu Zhong
  • Longtu Li
Article

Abstract

High aspect-ratio Li2ZrO3 nanotube (NT) layers were obtained by hydrothermal synthesis in LiOH solution using anodic ZrO2 NT arrays as templates. Characterizations of SEM, XRD, and TEM were performed. The results showed that tetragonal Li2ZrO3 NTs arrays containing a little monoclinic ZrO2 can be obtained using this simple method. The mean diameter of the NTs is approximately 150 nm. The alkalinity of hydrothermal solution was proved to have significant effect on the formation of the Li2ZrO3 NT arrays. Under different alkalinity, different growth mechanisms dominated the formation of the nanotubular layers.

Keywords

LiOH Barium Titanate Hydrothermal Reaction Strontium Titanate Barium Strontium Titanate 

Notes

Acknowledgements

The study was supported by National Science fund for distinguished young scholars (Grant No. 50625204), Science Fund for Creative Research Groups (Grant No. 50921061), Ministry of Sciences and Technology of China through National Basic Research Program of China (973 Program 2009CB623301), outstanding tutors for doctoral dissertations of S&T project in Beijing (No. YB20081000302), and Tsinghua University Initiative Scientific Research Program.

References

  1. 1.
    Nishikawa M, Baba AJ (1998) Nucl Mater 257:162CrossRefGoogle Scholar
  2. 2.
    Kinjyo T, Nishikawa M, Enoeda M, Fukada S (2008) Fusion Eng Des 83:580CrossRefGoogle Scholar
  3. 3.
    Ochoa-Fernandez E, Ronning M, Grande T, Chen D (2006) Chem Mater 18:6037CrossRefGoogle Scholar
  4. 4.
    Ida J, Xiong RT, Lin YS (2004) Sep Purif Technol 36:41CrossRefGoogle Scholar
  5. 5.
    Harrison DP (2008) Ind Eng Chem Res 47:6486CrossRefGoogle Scholar
  6. 6.
    Yang H, Xu Z, Fan M et al (2008) J Environ Sci 20:14CrossRefGoogle Scholar
  7. 7.
    Kang SZ, Wu T, Li X, Mu J (2010) Mater Lett 64:1404CrossRefGoogle Scholar
  8. 8.
    Nair BN, Yamaguchi T, Kawamura H, Nakao SI (2004) J Am Ceram Soc E7(I):68CrossRefGoogle Scholar
  9. 9.
    Ochoa-Fernandez E, Ronning M, Yu X, Grande T, Chen D (2008) Ind Eng Chem Res 47:434CrossRefGoogle Scholar
  10. 10.
    Pfeiffer H, Bosch P (2005) Chem Mater 17:1704CrossRefGoogle Scholar
  11. 11.
    Yi KB, Eriksen DO (2006) Sep Sci Technol 41:283CrossRefGoogle Scholar
  12. 12.
    Chen X, Fan H, Liu L (2005) J Cryst Growth 284:434CrossRefGoogle Scholar
  13. 13.
    Walton RI (2002) Chem Soc Rev 31:230CrossRefGoogle Scholar
  14. 14.
    Padture NP, Wei X (2003) J Am Ceram Soc 86:2215CrossRefGoogle Scholar
  15. 15.
    Zhao J, Wang X, Chen R, Li L (2005) Mater Lett 59:2329CrossRefGoogle Scholar
  16. 16.
    Guo L, Zhao JL, Wang XX, Xu XW, Li YX (2009) Int J Appl Ceram Technol 6:636CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang X, Sun C, Yao G, Li L (2008) J Am Ceram Soc 91:3792CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Limin Guo
    • 1
  • Xiaohui Wang
    • 1
    Email author
  • Shaopeng Zhang
    • 1
  • Caifu Zhong
    • 1
  • Longtu Li
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations