Journal of Materials Science

, Volume 46, Issue 21, pp 6932–6940 | Cite as

Thermal stability of cryomilled nanocrystalline aluminum containing diamantane nanoparticles

  • K. Maung
  • R. K. Mishra
  • I. Roy
  • L.-C. Lai
  • F. A. Mohamed
  • J. C. EarthmanEmail author


The thermal stability of nanoscale grains in cryomilled aluminum powders containing 1% diamantane was investigated. Diamantane is a diamondoid molecule consisting of 14 carbon atoms in a diamond cubic structure that is terminated by hydrogen atoms. The nanostructures of the resulting cryomilled powders were characterized using both transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The average grain size was found to be on the order of 22 nm, a value similar to that obtained for cryomilled Al without diamantane. To determine thermal stability, the powders were heated in an inert gas atmosphere at constant temperatures between 423 and 773 K (0.51Tm to 0.83Tm) for exposure times of up to 10 h. The average grain size for all powders containing diamantane was observed to remain in the nanocrystalline range (1–100 nm) for all exposures and was generally less than half of that for cryomilled pure Al heated under the same conditions. The thermal stability data were found to be consistent with a grain growth model based on drag forces exerted by dispersed particles against grain boundary migration. The present findings indicate that the presence of diamantane results in a substantial increase in the thermal stability of nanoscale grains in Al.


Transmission Electron Microscopy Micrographs Aluminum Powder Diamantane Thermal Exposure Lower Temperature Regime 



This study was supported by the National Science Foundation (Grant No DMR-0702978) and the UC Discovery Program with matching support from the Boeing Company (Award No. GCP07-10250). The authors wish to also acknowledge assistance from Dr. W. A. Chiou of the Univ. of Maryland, Dr. J. Greaves of the UC Irvine Mass Spectrometry Facility as well as Gloria Chow and Dr. Robert Carlson of ChevronTexaco Technology Ventures, LLC for their generous assistance in this study.


  1. 1.
    Suryanarayana C (1995) Int Mater Rev 40:41–64CrossRefGoogle Scholar
  2. 2.
    Witkin DW, Lavernia EJ (2006) Prog Mater Sci 51:1CrossRefGoogle Scholar
  3. 3.
    Gleiter H (2000) Acta Mater 48:1CrossRefGoogle Scholar
  4. 4.
    Birringer R, Gleiter H, Kelien HP, Marquardt P (1984) Phys Lett A 102:356CrossRefGoogle Scholar
  5. 5.
    Inoue A (1994) Mater Sci Eng A 179–180:57CrossRefGoogle Scholar
  6. 6.
    Hughes GD, Smith SD, Pande CS, Johnson HR, Armstrong RW (1986) Scripta Metall 20:93CrossRefGoogle Scholar
  7. 7.
    Li ZG, Smith DJ (1989) Appl Phys Lett 55:919CrossRefGoogle Scholar
  8. 8.
    Lu K, Wang JT (1991) J Appl Phys 69:522CrossRefGoogle Scholar
  9. 9.
    Mandich ML, Bondybey VE, Reents WD (1987) J Chem Phys 86:4245CrossRefGoogle Scholar
  10. 10.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Metally 1:11523Google Scholar
  11. 11.
    Koch CC (1997) Nanostruct Mater 9:13CrossRefGoogle Scholar
  12. 12.
    Fecht HJ (1995) Nanostruct Mater 6:33CrossRefGoogle Scholar
  13. 13.
    Shewmon PG (1969) Transformation in metals. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Perez RJ, Jiang HG, Dogan CP, Lavernia EJ (1998) Metall Mater Trans A 29A:2469CrossRefGoogle Scholar
  15. 15.
    Zhou F, Lee J, Dallek S, Lavernia EJ (2001) J Mater Res 16:3451CrossRefGoogle Scholar
  16. 16.
    Hofmeister C, Yao B, Sohn YH, Delahanty T, van den Bergh M, Cho K (2010) J Mater Sci 45:4871. doi: CrossRefGoogle Scholar
  17. 17.
    Burke JE (1949) Trans TMS-AIME 180:73Google Scholar
  18. 18.
    Roy I, Chauhan M, Lavernia EJ, Mohamed FA (2006) Metall Mater Trans A 37A:721CrossRefGoogle Scholar
  19. 19.
    Dahl JE, Liu SG, Carlson RMK (2003) Science 299:96CrossRefGoogle Scholar
  20. 20.
    Yamasaki T (2000) Mater Phys Mech 1:127Google Scholar
  21. 21.
    Choi D, Kim H, Nix WD (2004) IEEE J Microelctromech Syst 13:230CrossRefGoogle Scholar
  22. 22.
    Luton MJ, Jayanth CS, Disko MM, Matras S, Vallone J (1989) Mater Res Soc Symp Proc 132:79CrossRefGoogle Scholar
  23. 23.
    Mohamed FA (2003) Acta Mater 51:4107CrossRefGoogle Scholar
  24. 24.
    TellKamp VL, Dallek S, Cheng D, Lavernia EJ (2001) J Mater Res Soc 16:938CrossRefGoogle Scholar
  25. 25.
    Benjamin JS, Volin TE (1974) Metall Trans A 5:1929CrossRefGoogle Scholar
  26. 26.
    Beck PA, Towers J, Manly WD (1947) Trans TMS-AIME 175:162Google Scholar
  27. 27.
    Malow TR, Koch CC (1997) Acta Mater 45:2177CrossRefGoogle Scholar
  28. 28.
    Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1997) Acta Mater 47:2143CrossRefGoogle Scholar
  29. 29.
    Legros M, Gianola DS, Hemker KJ (2008) Acta Mater 56:2253CrossRefGoogle Scholar
  30. 30.
    Caillard D, Mompiou F, Legros M (2009) Acta Mater 57:2390CrossRefGoogle Scholar
  31. 31.
    Han BQ, Ye J, Tang F, Schoenung J, Lavernia EJ (2007) J Mater Sci 42:1660. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Maung
    • 1
  • R. K. Mishra
    • 1
    • 2
  • I. Roy
    • 1
    • 3
  • L.-C. Lai
    • 1
    • 4
  • F. A. Mohamed
    • 1
  • J. C. Earthman
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaIrvineUSA
  2. 2.M*ModalPittsburghUSA
  3. 3.Schlumberger Reservior CompletionsRosharonUSA
  4. 4.Department of IREAPUniversity of MarylandCollege ParkUSA

Personalised recommendations