Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6897–6903 | Cite as

Fracture behavior of Cu-cored solder joints

  • Yunsung Kim
  • Hyelim Choi
  • Hyoungjoo Lee
  • Dongjun Shin
  • Jeongtak Moon
  • Heeman Choe
Article

Abstract

Copper-cored solder can be regarded as the next-generation solder for microelectronic semiconductors exposed to harsh operating conditions owing to its excellent sustainability under extreme thermal conditions, e.g., in microelectronic semiconductors used in transportation systems. Cu-cored solder joints with two different coating layers, Sn–3.0Ag and Sn–1.0In, were compared with the baseline Sn–3.0Ag–0.5Cu solder. The fracture strength and failure mode were examined using the high-speed ball-pull and normal-speed shear tests. The Cu-cored solder joint with the Sn–1.0In plating layer exhibited the highest ball-pull and shear strengths. In addition, it showed a much lower percentage of interface fracture between the Cu-core and plating layer than the interface fracture percentage in the Sn–3.0Ag plating layer due to the improved wettability between the Cu-core and Sn–1.0In plating layer.

Keywords

Solder Joint Surface Finish Solder Ball Interface Fracture Plating Layer 

Notes

Acknowledgements

This research was supported by 2009 Academic Research & Development Program through Korea Sanhak Foundation. This study was also supported in part by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093814). HC also acknowledges support from the research program 2011 of Kookmin University in the Republic of Korea.

References

  1. 1.
    Gee S, Kelkar N, Huang J, Tu KN (2005) In: Proceedings of IPACK2005. ASME InterPACK‘05, San Francisco, p 1313Google Scholar
  2. 2.
    Chen CM, Lin HC (2006) J Electron Mater 35:1937CrossRefGoogle Scholar
  3. 3.
    Tan YC, Tan CM, Ng TC (2010) Microelectron Reliab 50:1352CrossRefGoogle Scholar
  4. 4.
    Liu L, Zhou W, Zhang H, Li B, Wu P (2010) Microelectron Reliab 50:251CrossRefGoogle Scholar
  5. 5.
    Ha SS, Kim JW, Yoon JW, Ha SO, Jung SB (2009) J Electron Mater 38:70CrossRefGoogle Scholar
  6. 6.
    Tseng HW, Lu CT, Hsiao YH, Liao PL, Chuang YC, Chung TY, Liu CY (2010) Microelectron Reliab 50:1159CrossRefGoogle Scholar
  7. 7.
    Shohji I, Shiratori Y, Yoshida H, Mizukami M, Ichida A (2004) Mater Trans 45:754CrossRefGoogle Scholar
  8. 8.
    Lee JH, Lim GT, Yang ST, Suh MS, Chung QH, Byun KY, Park YB (2008) J Kor Inst Met Mater 46:310Google Scholar
  9. 9.
    Ma L, Xu G, Sun J, Guo F, Wang X (2011) J Mater Sci 46:4896. doi: https://doi.org/10.1007/s10853-011-5401-3 CrossRefGoogle Scholar
  10. 10.
    Sung JY, Pyo SE, Koo JM, Yoon JW, Shin YE, Jung SB (2009) J Kor Inst Met Mater 47:261Google Scholar
  11. 11.
    Chen F, Gao F, Zhang J, Jin W, Xiao X (2011) J Mater Sci 46:3424. doi: https://doi.org/10.1007/s10853-010-5231-8 CrossRefGoogle Scholar
  12. 12.
    Chuang TH, Wu HM, Cheng MD, Chang SY, Yen SF (2004) J Electron Mater 33:22CrossRefGoogle Scholar
  13. 13.
    Chuang CM, Shih PC, Lin KL (2004) J Electron Mater 33:1CrossRefGoogle Scholar
  14. 14.
    Dybkov VI, Khoruzha VG, Sidorko VR, Meleshevich KA, Samelyuk AV, Berry DC, Barmak K (2009) J Mater Sci 44:5960. doi: https://doi.org/10.1007/s10853-009-3717-z CrossRefGoogle Scholar
  15. 15.
    Oh C, Park N, Han C, Bang M, Hong W (2009) J Kor Inst Met Mater 47:500Google Scholar
  16. 16.
    You T, Kim Y, Kim J, Lee J, Jung B, Moon J, Choe H (2009) J Electron Mater 38:410CrossRefGoogle Scholar
  17. 17.
    Qi Y, Lam R, Ghorbani HR, Snugovsky P, Spelt JK (2006) Microelectron Reliab 46:574CrossRefGoogle Scholar
  18. 18.
    Sun J, Xu G, Guo F, Xia Z, Lei Y, Shi Y, Li X, Wang X (2011) J Mater Sci 46:3544. doi: https://doi.org/10.1007/s10853-011-5265-6 CrossRefGoogle Scholar
  19. 19.
    Guo F, Xu G, He H (2009) J Mater Sci 44:5595. doi: https://doi.org/10.1007/s10853-009-3787-y CrossRefGoogle Scholar
  20. 20.
    He H, Xu G, Guo F (2010) J Mater Sci 45:929. doi: https://doi.org/10.1007/s10853-009-4022-6 CrossRefGoogle Scholar
  21. 21.
    Jung DJ, Park DY, Lee JK, Kim HJ, Lee KA (2008) J Kor Inst Met Mater 46:321Google Scholar
  22. 22.
    Uenishi K, Kohara Y, Sakatani S, Saeki T, Kobayashi KF, Yamamoto M (2002) Mater Trans 43:1833CrossRefGoogle Scholar
  23. 23.
    Liang J, Downes S, Dariavach N, Shangguan D, Heinrich SM (2004) J Electron Mater 33:1507CrossRefGoogle Scholar
  24. 24.
    Imae S, Sugitani Y, Nishida M, Kajita O, Takeuchi T (2006) In: Powder metallurgy. Word Congress, Kyoto, p 1207Google Scholar
  25. 25.
    Dutta I, Raj R, Kumar P, Chen T, Nagaraj CM, Liu J, Renavikar M, Wakharkar V (2009) J Electron Mater 38:2735CrossRefGoogle Scholar
  26. 26.
    Brandes EA, Brook GB (1997) Smithells metals reference book, 7th edn. Butterworth Heinemann, OxfordGoogle Scholar
  27. 27.
    Lee JH, Eom YS, Choi KS, Choi BS, Yoon HG, Moon JT, Kim YS (2004) J Electron Mater 33:277CrossRefGoogle Scholar
  28. 28.
    Šebo P, Moser Z, Švec P, Janičkovič D, Dobročka E, Gasior W, Pstruś J (2009) J Alloys Compd 480:409CrossRefGoogle Scholar
  29. 29.
    Lin SK, Yang CF, Wu SH, Chen SW (2008) J Electron Mater 37:498CrossRefGoogle Scholar
  30. 30.
    Chiang MJ, Chang SY, Chuang TH (2004) J Electron Mater 33:34CrossRefGoogle Scholar
  31. 31.
    Liu P, Yao P, Liu J (2009) J Alloys Compd 470:188CrossRefGoogle Scholar
  32. 32.
    Kanlayasiri K, Mongkolwongrojn M, Ariga T (2009) J Alloys Compd 485:225CrossRefGoogle Scholar
  33. 33.
    You T, Kim Y, Jung W, Moon J, Choe H (2009) J Alloys Compd 486:242CrossRefGoogle Scholar
  34. 34.
    Chin YT, Lam PK, Yow HK, Tou TY (2008) Microelectron Reliab 48:1079CrossRefGoogle Scholar
  35. 35.
    Chen WM, McCloskey P, O’Mathuna SC (2006) Microelectron Reliab 46:896CrossRefGoogle Scholar
  36. 36.
    Wong EH, Rajoo R, Seah SKW, Selvanayagam CS, van Driel WD, Caers JFJM, Zhao XJ, Owens N, Tan LC, Leoni M, Eu PL, Lai YS, Yeh CL (2008) Microelectron Reliab 48:1069CrossRefGoogle Scholar
  37. 37.
    Mei Z, Morris JW Jr (1992) J Electron Mater 21:599CrossRefGoogle Scholar
  38. 38.
    Wang YT, Ho CJ, Tsai HL (2010) Mater Trans 51:1735CrossRefGoogle Scholar
  39. 39.
    Hong E, Kaplin B, You T, Suh M, Kim Y, Choe H (2011) Wear 270(9–10):591CrossRefGoogle Scholar
  40. 40.
    Davis JR (2001) ASM specialty handbook copper and copper alloys. ASM international, OhioGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yunsung Kim
    • 1
  • Hyelim Choi
    • 1
  • Hyoungjoo Lee
    • 1
  • Dongjun Shin
    • 1
  • Jeongtak Moon
    • 2
  • Heeman Choe
    • 1
  1. 1.School of Advanced Materials Engineering, Kookmin UniversitySeoulRepublic of Korea
  2. 2.MK Electron Co., LtdKyeonggi-doRepublic of Korea

Personalised recommendations