Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6863–6870 | Cite as

The mechanical response of Rohacell foams at different length scales

  • S. Arezoo
  • V. L. TagarielliEmail author
  • N. Petrinic
  • J. M. Reed
Article

Abstract

The quasi-static mechanical response of polymethacrylimide (PMI) foams of density ranging from 50 to 200 kg m−3 is investigated in order to provide experimental data to inspire and validate numerical constitutive models for the response of polymer foams. The macroscopic mechanical response is characterised by conducting quasi-static compression, tension, shear and indentation experiments, whereas microscopic deformation mechanisms are identified by conducting in situ SEM observations during static compression and tension tests; it is shown that foams of low density collapse by cell wall buckling while foams of high density undergo plastic cell-wall bending. As a result, both the elastic and plastic macroscopic response of the foam display a tension/compression asymmetry.

Keywords

Foam Indentation Depth Environmental Scanning Electron Microscope Elastic Buckling Indentation Response 

Notes

Acknowledgements

The authors would like to thank Rolls-Royce plc for the provision of financial support for Sara Arezoo’s PhD project. We are grateful to Röhm Ltd for providing the Rohacell foams and acknowledge the assistance of Mr P. Siegkas with experiments.

References

  1. 1.
    Subhash G, Liu Q, Gao X (2005) Int J Impact Eng 329:1113Google Scholar
  2. 2.
    Eaves D (2004) Handbook of polymer foams, vol 1. Rapra Technology Limited, Shropshire, p 290Google Scholar
  3. 3.
    Song B, Chen W, Lu W-Y (2007) J Mater Sci 42(17):7502. doi: https://doi.org/10.1007/s10853-007-1612-z CrossRefGoogle Scholar
  4. 4.
    Mills N (2007) Polymer foams handbook: engineering and biomechanics applications and design guide. Elsevier Ltd, Amsterdam, p 535Google Scholar
  5. 5.
    Mines RAW (2008) Strain 44:71CrossRefGoogle Scholar
  6. 6.
    Reid SR, Peng C (1997) Int J Impact Eng 19:531CrossRefGoogle Scholar
  7. 7.
    Tagarielli VL, Deshpande VS, Fleck NA (2007) Compos B 39:83CrossRefGoogle Scholar
  8. 8.
    Deshpande VS, Fleck NA (2000) Int J Impact Eng 24(3):277CrossRefGoogle Scholar
  9. 9.
    Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, p 532Google Scholar
  10. 10.
    Chen CP, Lakes RS (1995) Cell Polym 14:186Google Scholar
  11. 11.
    Li QM, Mines RAW, Birch RS (1999) Int J Solids Struct 37(2000):19Google Scholar
  12. 12.
    Benderly D, Putter S (2004) J Polym Test 23:51CrossRefGoogle Scholar
  13. 13.
    Zenkert D, Burman M (2009) Compos Sci Technol 69:785CrossRefGoogle Scholar
  14. 14.
    Flores-Johnson EA, Li QM, Mines RAW (2008) J Cell Plast 44(5):415CrossRefGoogle Scholar
  15. 15.
    Zenkert D, Shipsha A, Persson K (2004) J Compos B 35(6–8):511CrossRefGoogle Scholar
  16. 16.
    Steeves CA, Fleck NA (2004) Int J Mech Sci 46:585CrossRefGoogle Scholar
  17. 17.
    Rizov V, Shipsha A, Zenkert D (2005) J Compos Struct 69(1):95CrossRefGoogle Scholar
  18. 18.
    Roehm (1998) Rohacell WF PMI Foam. Roehm Ltd., Milton KeynesGoogle Scholar
  19. 19.
    Fleck NA, Otoyo H, Needleman A (1992) Int J Solids Struct 29:1613CrossRefGoogle Scholar
  20. 20.
    Deshpande VS, Fleck NA (2001) Acta Mater 49(10):1859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Arezoo
    • 1
    • 2
  • V. L. Tagarielli
    • 1
    Email author
  • N. Petrinic
    • 1
  • J. M. Reed
    • 2
  1. 1.Engineering DepartmentUniversity of OxfordOxfordUK
  2. 2.Rolls-Royce plcDerbyUK

Personalised recommendations