Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6830–6834 | Cite as

Growth of highly oriented iridium oxide bottom electrode for Pb(Zr,Ti)O3 thin films using titanium oxide seed layer

  • L. TrupinaEmail author
  • C. Miclea
  • L. Amarande
  • M. Cioangher
Article

Abstract

Due to its low resistivity and excellent thermal stability, IrO2 has attracted attention as an alternative for electrode material in ferroelectric integrated circuit applications. Oriented growth of IrO2 electrode film was investigated with the goal to control the texture of the PZT thin film. IrO2 films were prepared by DC reactive sputtering. PZT film was prepared by RF magnetron sputtering single target deposition method. The whole layer stack was grown onto amorphous thermal oxide of a silicon wafer. The results indicate that IrO2 thin film was preferentially (200) oriented when a TiO2 seeding layer was used. The orientation relationships along the whole PZT(111)/IrO2(200)/TiO2(200)/Ti structure was discussed.

Keywords

TiO2 Thin Film Leakage Current Density IrO2 Ferroelectric Thin Film Iridium Oxide 

Notes

Acknowledgements

We thank for the financial support to the Romanian National Authority for Scientific Research (PN09-450101, contract No. 45N/1.03.2009).

References

  1. 1.
    Jiang AQ, Lin YY, Tang TA (2007) Appl Phys Lett 91:202906CrossRefGoogle Scholar
  2. 2.
    Nakamura T, Nakao Y, Kamisawa A, Takasu H (1994) Appl Phys Lett 65(12):1522CrossRefGoogle Scholar
  3. 3.
    Aoki K, Fukuda Y, Numata K, Nishimura A (1996) Jpn J Appl Phys 35:2210CrossRefGoogle Scholar
  4. 4.
    Asano G, Morioka H, Funakubo H, Shibutami T, Oshima N (2003) Appl Phys Lett 83:5506CrossRefGoogle Scholar
  5. 5.
    Maeder T, Muralt P, Sagalowicz L (1999) Thin Solid Films 345:300CrossRefGoogle Scholar
  6. 6.
    Norga GJ, Wouters DJ (2000) Integr Ferroelectr 31:1205CrossRefGoogle Scholar
  7. 7.
    Yi JH, Seveno R, Gundel HW (1999) Integr Ferroelectr 23:99CrossRefGoogle Scholar
  8. 8.
    Bai GR, Tsu IF, Wang A, Foster CM, Murray CE, Dravid VP (1998) Appl Phys Lett 72:1572CrossRefGoogle Scholar
  9. 9.
    Trupina L, Miclea C, Tanasoiu C, Amarande L, Miclea CT, Cioangher M (2007) J Optoelectron Adv Mater 9(5):1508Google Scholar
  10. 10.
    Miclea C, Tanasoiu C, Miclea CF, Amarande L, Gheorghiu A, Spanulescu I, Plavitu C, Miclea CT, Cioangher MC, Trupina L, Iuga A (2007) J Eur Ceram Soc 27(13–15):4055CrossRefGoogle Scholar
  11. 11.
    Ting CC, Chen SY, Liu DM (2001) Thin Solid Films 402:290CrossRefGoogle Scholar
  12. 12.
    Ryden WD, Lawson AW (1970) Phys Rev B 1(4):1494CrossRefGoogle Scholar
  13. 13.
    Fox GR, Sun S, Takamatsu T (2000) Integr Ferroelectr 31:147CrossRefGoogle Scholar
  14. 14.
    Lee MS, Park KS, Nam SD, Lee KM, Seo JS, Lee SW, Lee YT, An HG, Kim HJ, Cho SL, Son YH, Kim YD, Jung YJ, Heo JE, Park SO, Chung UI, Moon JT (2002) Jpn J Appl Phys 41:6709CrossRefGoogle Scholar
  15. 15.
    Glen RF, Shan S, Tomohiro T, (2000) Integr Ferroelectr 31(1):47Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Trupina
    • 1
    Email author
  • C. Miclea
    • 1
  • L. Amarande
    • 1
  • M. Cioangher
    • 1
  1. 1.National Institute for Materials PhysicsBucharestRomania

Personalised recommendations