Journal of Materials Science

, Volume 46, Issue 21, pp 6812–6822 | Cite as

Methods for enhanced control over the density and electrical properties of SWNT networks

  • L. David Lipscomb
  • Pornnipa Vichchulada
  • Nidhi P. Bhatt
  • Qinghui Zhang
  • Marcus D. LayEmail author


The formation of manufacturable electronic materials that incorporate single-walled carbon nanotubes (SWNTs) will most likely involve the use of networks of these molecular wires, due to the enhanced current drive and reproducibility of such films. Therefore, control over the density of SWNTs during the deposition of 2-D networks is of critical importance for the development of numerous enhanced electronic materials. Room temperature deposition methods are of particular interest as they allow separation, purification, and/or chemical modification of SWNTs before deposition. This article reports three iterative liquid-deposition techniques that allow control over the properties of three distinct types of SWNT networks. First, density control was obtained for 2-D networks of unbundled, high-aspect ratio SWNTs. Such networks exhibited semiconductive behavior, with tunable on/off ratios. Second, electrically continuous 2-D clusters of high aspect ratio SWNTs were formed by allowing capillary forces to develop in a sessile suspension droplet. These constructs displayed tunable metallic conductivity, and may have the applications as interconnects in microelectronics. Finally, highly conductive, 3-D networks of bundled SWNTs were formed via an evaporation method. For these three types of networks, the density of SWNTs, and thus the macroscopic conductance, was readily controlled via the number of deposition cycles used in their formation.


Deposition Method Deposition Cycle Macroscopic Conductance SWNT Network Deposition Suspension 



The authors gratefully acknowledge the financial support from the National Science Foundation through NSF Grant DMR-0906564.


  1. 1.
    Lefebvre J, Antonov RD, Radosavljevic M, Lynch JF, Llaguno M, Johnson AT (2000) Carbon 38:1745CrossRefGoogle Scholar
  2. 2.
    Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49CrossRefGoogle Scholar
  3. 3.
    Rafii-Tabar H (ed) (2008) Computational physics of carbon nanotubes. Cambridge University Press,  CambridgeGoogle Scholar
  4. 4.
    Appenzeller J, Martel R, Derycke V et al (2002) Microelectron Eng 64:391CrossRefGoogle Scholar
  5. 5.
    Chen J, Klinke C, Afzali A, Avouris P (2005) Appl Phys Lett 86:123108CrossRefGoogle Scholar
  6. 6.
    Terrones M (2003) Annu Rev Mater Res 33:419CrossRefGoogle Scholar
  7. 7.
    Dai H (2002) Acc Chem Res 35:1035CrossRefGoogle Scholar
  8. 8.
    Dai LM, Soundarrajan P, Kim T (2002) Pure Appl Chem 74:1753CrossRefGoogle Scholar
  9. 9.
    Pengfei QF, Vermesh O, Grecu M et al (2003) Nano Lett 3:347CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Vichchulada P, Cauble MA, Lay MD (2009) J Mater Sci. 44:1206. doi: CrossRefGoogle Scholar
  11. 11.
    Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK (2004) J Am Chem Soc 126:4462CrossRefGoogle Scholar
  12. 12.
    LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao ZN (2008) Science 321:101. doi: CrossRefGoogle Scholar
  13. 13.
    Park YT, Ham AY, Grunlan JC (2011) J Mater Chem 21:363. doi: CrossRefGoogle Scholar
  14. 14.
    Xiao GZ, Tao Y, Lu JP, Zhang ZY, Kingston D (2011) J Mater Sci 46:3399. doi: CrossRefGoogle Scholar
  15. 15.
    Jiao LY, Xian XJ, Wu ZY, Zhang J, Liu ZF (2009) Nano Lett 9:205. doi: CrossRefGoogle Scholar
  16. 16.
    Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Proc Natl Acad Sci USA 104:13574CrossRefGoogle Scholar
  17. 17.
    Masarapu C, Zeng HF, Hung KH, Wei B (2009) Acs Nano 3:2199. doi: CrossRefGoogle Scholar
  18. 18.
    Vairavapandian D, Vichchulada P, Lay MD (2008) Anal Chim Acta 626:119. doi: CrossRefGoogle Scholar
  19. 19.
    Siqueira JR, Werner CF, Backer M et al (2009) J Phys Chem C 113:14765. doi: CrossRefGoogle Scholar
  20. 20.
    Vichchulada P, Shim J, Lay MD (2008) J Phys Chem C 112:19186CrossRefGoogle Scholar
  21. 21.
    Bekyarova E, Itkis ME, Cabrera N et al (2005) J Am Chem Soc 127:5990. doi: CrossRefGoogle Scholar
  22. 22.
    ZC Wu, Chen ZH, Du X et al (2004) Science 305:1273CrossRefGoogle Scholar
  23. 23.
    Rowell MW, Topinka MA, McGehee MD et al (2006) Appl Phys Lett 88:233506. doi: 23350610.1063/1.2209887CrossRefGoogle Scholar
  24. 24.
    Jung MS, Hyeon-Lee JY, Lee JH, Park JJ, Jung IS, Kim JM (2008) Adv Funct Mater 18:449. doi: CrossRefGoogle Scholar
  25. 25.
    Jang EY, Kang TJ, HW Im, Kim DW, Kim YH (2008) Small 4:2255. doi: CrossRefGoogle Scholar
  26. 26.
    Gruner G (2006) J Mater Chem 16:3533CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Vichchulada P, Lay MD (2010) Phys Status Solidi A 207:734. doi: CrossRefGoogle Scholar
  28. 28.
    Park JU, Meitl MA, Hur SH et al (2006) Angew Chem Int Ed 45:581. doi: CrossRefGoogle Scholar
  29. 29.
    Eda G, Fanchini G, Kanwal A, Chhowalla M (2008) J Appl Phys 103:093118. doi: CrossRefGoogle Scholar
  30. 30.
    Vichchulada P, Zhang Q, Duncan A, Lay MD (2010) ACS Appl Mater Interfaces 2:467. doi: CrossRefGoogle Scholar
  31. 31.
    Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Proc Natl Acad Sci USA 100:4984CrossRefGoogle Scholar
  32. 32.
    Shim J, Vichchulada P, Zhang Q, Lay MD (2010) J Phys Chem C 114:652. doi: CrossRefGoogle Scholar
  33. 33.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827CrossRefGoogle Scholar
  34. 34.
    Lian YF, Maeda Y, Wakahara T et al (2003) J Phys Chem B 107:12082. doi: CrossRefGoogle Scholar
  35. 35.
    Maeda Y, Kimura S, Kanda M et al (2005) J Am Chem Soc 127:10287. doi: CrossRefGoogle Scholar
  36. 36.
    Zhou XJ, Park JY, Huang SM, Liu J, McEuen PL (2005) Phys Rev Lett 95:146805CrossRefGoogle Scholar
  37. 37.
    Zhou O, Shimoda H, Gao B, Oh S, Fleming L, Yue G (2002) Acc Chem Res 35:1045CrossRefGoogle Scholar
  38. 38.
    Tseng YC, Phoa K, Carlton D, Bokor J (2006) Nano Lett 6:1364CrossRefGoogle Scholar
  39. 39.
    Vichchulada P, Vairavapandian D, Lay MD (2009) Phys Status Solidi-RRL 3:31. doi: CrossRefGoogle Scholar
  40. 40.
    Vichchulada P, Zhang Q, Lay MD (2007) Analyst 132:719. doi: CrossRefGoogle Scholar
  41. 41.
    Zhang Q, Vichchulada P, Lay MD (2010) J Phys Chem C 114:16292. doi: CrossRefGoogle Scholar
  42. 42.
    Hu H, Larson RG (2006) J Phys Chem B 110:7090. doi: CrossRefGoogle Scholar
  43. 43.
    Stauffer D (1985) J Phys A 18:1827CrossRefGoogle Scholar
  44. 44.
    Obukhov SP (1988) J Phys A 21:3975CrossRefGoogle Scholar
  45. 45.
    Pike GE, Seager CH (1974) Phys Rev B 10:1421CrossRefGoogle Scholar
  46. 46.
    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Phys Rev Lett 89:106801. doi: CrossRefGoogle Scholar
  47. 47.
    Lee CW, Zhang K, Tantang H et al (2007) Appl Phys Lett 91:103515. doi: CrossRefGoogle Scholar
  48. 48.
    Nirmalraj PN, Boland JJ (2010) Acs Nano 4:3801. doi: CrossRefGoogle Scholar
  49. 49.
    Lee CW, Weng C-H, Wei L et al (2008) J Phys Chem C 112:12089. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. David Lipscomb
    • 1
  • Pornnipa Vichchulada
    • 1
  • Nidhi P. Bhatt
    • 1
  • Qinghui Zhang
    • 1
  • Marcus D. Lay
    • 1
    Email author
  1. 1.Department of Chemistry, Center for Nanoscale Electronic Materials (CNEM)University of GeorgiaAthensUSA

Personalised recommendations