Journal of Materials Science

, Volume 46, Issue 21, pp 6801–6811 | Cite as

Influence of process and test parameters on the mechanical properties of flax/epoxy composites using response surface methodology

  • P. B. GningEmail author
  • S. Liang
  • L. Guillaumat
  • W. J. Pui


This article presents investigations on the influence of process and test parameters on the mechanical and physical properties of flax/epoxy composites using experimental design method. Specimens fabricated and tested with parameters given by a Doehlert experimental design system have been submitted to quasi-static mechanical loadings, as well as fibre volume fraction and ply thickness measurements. Response surfaces methodology allowed the determination of empirical polynomials corresponding to mechanical responses and to fibre content measurements. The study showed the strong influence of the temperature test parameter on material’s mechanical properties and specimens’ fracture, followed by compression pressure and number of plies parameters.


Fibre Volume Fraction Epoxy Matrix Failure Strain Compression Pressure Fibre Fraction 



The financial support of the Faber fund from the Bourgogne Region, France is gratefully acknowledged.


  1. 1.
    Corbière-Nicollier T, Gfeller Laban B, Lundquist L, Leterrier Y, Månson JAE, Jolliet O (2001) Resour Conserv Recycl 33:267CrossRefGoogle Scholar
  2. 2.
    Bodros E, Pillin I, Montrelay N, Baley C (2007) Compos Sci Technol 67:462CrossRefGoogle Scholar
  3. 3.
    Baley C, Busnel F, Grohens Y, Sire O (2006) Composites A 37:1626CrossRefGoogle Scholar
  4. 4.
    Charlet K, Jernot JP, Gomina M, Bréard J, Morvan C, Baley C (2009) Compos Sci Technol 69:1399CrossRefGoogle Scholar
  5. 5.
    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Composites A 38:1912CrossRefGoogle Scholar
  6. 6.
    Baley C, Perrot Y, Busnel F, Guezenoc H, Davies P (2006) Mater Lett 60:2984CrossRefGoogle Scholar
  7. 7.
    Van de Velde K, Kielens P (2003) Compos Struct 62:443CrossRefGoogle Scholar
  8. 8.
    Van de Weyenberg I, Chi truong T, Vangrimde B, Verpoest I (2006) Composites A 37:1368CrossRefGoogle Scholar
  9. 9.
    Joffe R, Andersons J, Wallström L (2003) Composites A 34:603CrossRefGoogle Scholar
  10. 10.
    Le Duigou A, Davies P, Baley C (2010) Compos Sci Technol 70:231CrossRefGoogle Scholar
  11. 11.
    Zafeiropoulos NE, Baillie CA, Matthews FL (2001) Composites A 32(3–4):525CrossRefGoogle Scholar
  12. 12.
    Guillaumat L (2000) Compos Struct 76:163CrossRefGoogle Scholar
  13. 13.
    Doehlert DH (1970) Appl Stat 19:231CrossRefGoogle Scholar
  14. 14.
    Doehlert DH, Klee VL (1972) Discret Math 2:309CrossRefGoogle Scholar
  15. 15.
    Mathieu D, Phan-Tan-Luu R, Sergent M (1989) Méthodologie de la recherche expérimentale. LPRAI, MarseilleGoogle Scholar
  16. 16.
    EN ISO 527-4 (1997) Determination of tensile properties—test conditions for isotropic and orthotropic fibre-reinforced plastic composites, July 1997Google Scholar
  17. 17.
    EN ISO 14129 (1998) Fibre-reinforced plastic composites—Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the ± 45° tension test method, April 1998Google Scholar
  18. 18.
    Ganster J, Fink HP (1999) Physical constants of cellulose. In: Brandup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New YorkGoogle Scholar
  19. 19.
    Software Nemrodw® V 2000, LPRAI, MarseilleGoogle Scholar
  20. 20.
    Gay D, Hoa SV, Tsai SW (2003) Composite materials design and applications. CRC Press LLC. ISBN 1-58716-084-6Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. B. Gning
    • 1
    Email author
  • S. Liang
    • 1
  • L. Guillaumat
    • 1
  • W. J. Pui
    • 2
  1. 1.DRIVE–E.A. 1859ISATNevers CedexFrance
  2. 2.UTPTronohMalaysia

Personalised recommendations