Journal of Materials Science

, Volume 46, Issue 21, pp 6794–6800 | Cite as

Purification of hot-pressed ZrCO into ZrC by a laser treatment

  • F. Goutier
  • N. Glandut
  • P. LefortEmail author


Pellets of zirconium oxycarbide ZrC0.82O0.14, obtained by hot pressing of zirconia and zirconium carbide, were irradiated by an ytterbium-doped fibre laser in argon atmosphere (incident power density = 24.7 kW cm−2, beam diameter 0.7 mm). The surface of the samples, heated at 3300 °C and more, i.e. near the melting, released its oxygen, leading to the carbide ZrC0.75 despite the presence of traces of oxygen in the cell of treatment (\( P_{{{\text{O}}_{2} }} \) estimated around 1 Pa). A mechanism is proposed for explaining this result, based on the thermodynamical stability of the carbide, higher at these temperature and oxygen pressure than the oxide. Oxygen of the oxycarbide evolved in the form of the gaseous species ZrO, while the grains of the oxycarbide, converted into the carbide, grew from 2 to 20 μm. Similarly, the traces of dioxygen present inside the treatment cell react with the carbide, giving ZrO (gas), and do not form any oxidised solid phase. This opens interesting future prospects in the field of the production of oxygen-free zirconium carbide powders.


Carbide Boron Nitride Laser Treatment Dioxygen Argon Flow 


  1. 1.
    Bacciochini A, Glandut N, Lefort P (2009) J Eur Ceram Soc 29:1507CrossRefGoogle Scholar
  2. 2.
    Shimada S (2002) Solid State Ionics 149:319CrossRefGoogle Scholar
  3. 3.
    Hou X-M, Chou K-C (2011) J Alloys Compd 509:2395CrossRefGoogle Scholar
  4. 4.
    Guillermet AF (1995) J Alloys Compd 217:69CrossRefGoogle Scholar
  5. 5.
    Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1986) JANAF thermochemical tables. American Ceramics Society, New YorkGoogle Scholar
  6. 6.
    Yilbas BS, Akhtar SS, Karatas C (2011) Appl Surf Sci. 257:6912. doi: CrossRefGoogle Scholar
  7. 7.
    Min-Haga E, Scott WD (1988) J Mater Sci 23:2865. doi: CrossRefGoogle Scholar
  8. 8.
    Storms EK (1967) Refractory materials: the refractory carbides, vol 2. Academic Press, New YorkGoogle Scholar
  9. 9.
    Ouensanga A, Dode M (1976) J Nucl Mater 59:49CrossRefGoogle Scholar
  10. 10.
    Barnier P (1986) Frittage et caractérisation de céramiques dans le système zirconium-carbone-oxygène. Thesis, Ecole Nationale Supérieure des Mines, Saint Etienne, FranceGoogle Scholar
  11. 11.
    Storms EK, Wagner P (1973) High Temp Sci 5:454Google Scholar
  12. 12.
    Kolasinski KW (2007) Curr Opin Solid State Mater Sci 11:76CrossRefGoogle Scholar
  13. 13.
    Heuer AH, Lou VLK (1990) J Am Ceram Soc 73:2785Google Scholar
  14. 14.
    Lefort P, Tetard D, Tristant P (1993) J Eur Ceram Soc 12:123CrossRefGoogle Scholar
  15. 15.
    Maître A, Lefort P (1997) Solid State Ionics 104:109CrossRefGoogle Scholar
  16. 16.
    Sacks MD, Wang C-A, Yang Z, Jain A (2004) J Mater Sci 39:6057. doi: CrossRefGoogle Scholar
  17. 17.
    Alexandrescu R, Borsella E, Botti S, Cesile MC, Martelli S, Giorgi R, Turtù S, Zappa G (1997) J Mater Sci 32:5629. doi: CrossRefGoogle Scholar
  18. 18.
    Zhao D, Hu H, Zhang C, Zhang Y, Wang J (2010) J Mater Sci 45:6401. doi: CrossRefGoogle Scholar
  19. 19.
    Zhao L, Jia D, Duan X, Yang Z, Zhou Y (2011) Int J Refract Metals Hard Mater 29:516CrossRefGoogle Scholar
  20. 20.
    Wang X-G, Guo W-M, Kan Y-M, Zhang G-J, Wang P-L (2011) J Eur Ceram Soc 31:1103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.SPCTS, CNRS UMR 6638Centre Européen de la CéramiqueLimogesFrance

Personalised recommendations