Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7121–7128 | Cite as

Antibacterial activity of silver-modified natural clinoptilolite

  • Violeta Elena CopciaEmail author
  • Camelia Luchian
  • Simona Dunca
  • Nicolae Bilba
  • Claudia Mihaela Hristodor
Size Dependent Effects

Abstract

The aim of the present work was to estimate the bactericidal activity and efficacy of silver pre-treated clinoptilolite-rich tuff from Marsid (Romania) in solid media (agar plates) against Gram-negative Escherichia coli ATCC 25922 and Gram-positive Staphylococcus aureus ATCC 25923. Two samples of natural clinoptilolite-rich tuff was first pre-treated with oxalic acid and sodium hydroxide solutions, respectively. The sample treated with oxalic acid was then exchanged with sodium chloride solution to obtain sodium form. Finally, both samples were exchanged with silver nitrate solution at room temperature for 24 h to obtain silver forms (P1-Ag+ and P2-Ag+) of clinoptilolite. The structure, morphology, and elemental composition of the pre-treated clinoptilolite samples were characterized by XRD, infrared (ATR-IR), SEM, and EDX analysis. The antibacterial activity was investigated by exposing E. coli and S. aureus in nutritive agar to the silver-clinoptilolite samples. Microorganisms were completely inhibited at 2 mg Ag+-clinoptilolite/mL nutritiv medium after 24 h of incubation at 37 °C. The silver-clinoptilolite sample derived from natural clinoptilolite pre-treated with oxalic acid (P1-Ag+) exhibit a stronger antibacterial effect in the presence of E. coli and the sample derived from natural clinoptilolite pre-treated with sodium hydroxide (P2-Ag+) in the presence of S. aureus.

Keywords

Zeolite Oxalic Acid Sodium Hydroxide Clinoptilolite Natural Zeolite 

Notes

Acknowledgements

Claudia-Mihaela Hristodor is supported by a POSDRU/89/1.5/S/49944, “Developing the innov,” Alexandru Ioan Cuza University, Iasi.

Conflict of interest

The other authors declare that they have no potential conflicts of interest to disclose.

References

  1. 1.
    Alcamo IE (2004) Microbes and society: an introduction to microbiology, 2nd edn. Jones and Bartlet Publishers, Sudbury, MA, pp 339–342Google Scholar
  2. 2.
    Top A, Ülkü S (2004) Appl Clay Sci 27(1–2):13CrossRefGoogle Scholar
  3. 3.
    Chen X, Schluesener HJ (2008) Toxicol Lett 176:1CrossRefGoogle Scholar
  4. 4.
    Silvestry-Rodriguez N, Sicairos-Ruelas EE, Gerba CP, Bright KR (2007) Rev Environ Contam Toxicol 191:23Google Scholar
  5. 5.
    Son H, Cho M, Kim J, Oh B, Chung H, Yoon J (2005) Water Res 39:7211CrossRefGoogle Scholar
  6. 6.
    Koivunen J, Heinonen-Tanski H (2005) Water Res 39:1519CrossRefGoogle Scholar
  7. 7.
    Grujer N, Von-Guten U (2003) Water Res 37:1667CrossRefGoogle Scholar
  8. 8.
    Landsdown AB (2002) J Wound Care 11(45):125CrossRefGoogle Scholar
  9. 9.
    Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275(1):177CrossRefGoogle Scholar
  10. 10.
    Song HY, Ko KK, Oh IH, Lee BT (2006) Eur Cells Mater 11:58Google Scholar
  11. 11.
    Joyakumar R, Lee YS, Rajkumar M, Nanjundan S (2004) J Appl Polym Sci 91:288CrossRefGoogle Scholar
  12. 12.
    Jiang S, Wang L, Yu H, Chen Y, Shi Q (2006) J Appl Polym Sci 99:2389CrossRefGoogle Scholar
  13. 13.
    Russell AD, Hugo WB (1994) Prog Med Chem 31:351CrossRefGoogle Scholar
  14. 14.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 271:76CrossRefGoogle Scholar
  15. 15.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res A 52(4):662CrossRefGoogle Scholar
  16. 16.
    Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Biomaterials 21:393CrossRefGoogle Scholar
  17. 17.
    Sotiriou GA, Pratsinis SE (2010) Environ Sci Technol 44(14):5649CrossRefGoogle Scholar
  18. 18.
    Lanje AS, Sharma SJ, Pode RB (2010) J Chem Pharm Res 2(3):478Google Scholar
  19. 19.
    Lansdown AB (2004) Br J Nurs 13:S6CrossRefGoogle Scholar
  20. 20.
    Li Y, Leung P, Yao L, Song QW, Newton E (2006) J Hosp Infect 62(1):58CrossRefGoogle Scholar
  21. 21.
    Madhumathi K, Sudhceh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) J Mater Sci Mater Med 21:807CrossRefGoogle Scholar
  22. 22.
    El-Rafic MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Carbohydr Polym 80(3):779CrossRefGoogle Scholar
  23. 23.
    Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S (2008) CMU J Nat Sci (Special Issue on Nanotechnology) 7(1):33Google Scholar
  24. 24.
    Necula AM, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S (2010) J Polym Anal Charact 15:341CrossRefGoogle Scholar
  25. 25.
    De la Rosa-Gomez I, Olguin MT, Alcantara D (2008) J Environ Manag 88:853CrossRefGoogle Scholar
  26. 26.
    Rivera-Garza M, Olguin MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2000) Microporous Mesoporous Mater 39:431CrossRefGoogle Scholar
  27. 27.
    Milan Z, De las Pozas C, Cruz M, Borja R, Sanchez E, Angonavan K, Espinosa Y, Luna B (2001) J Environ Sci Health A 36(6):1073CrossRefGoogle Scholar
  28. 28.
    Inoue Y, Hoshino M, Takahashi H, Naguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) J Inorg Biochem 92(1):37CrossRefGoogle Scholar
  29. 29.
    Quintavalla S, Vicini I (2002) Meat Sci 62:373CrossRefGoogle Scholar
  30. 30.
    Appendini P, Hotchkiss JH (2002) Innov Food Sci Emerg Technol 3(2):113CrossRefGoogle Scholar
  31. 31.
    Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Nobile M, Del MA (2010) J Food Protect 73(12):2256CrossRefGoogle Scholar
  32. 32.
    Trogolo KA (2010) Med Devices Diagnos Ind 32(8)Google Scholar
  33. 33.
    Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R (2008) J Am Med Assoc 300(7):805CrossRefGoogle Scholar
  34. 34.
    Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) Biomaterials 25(18):4383CrossRefGoogle Scholar
  35. 35.
    Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) J Antimicrob Chemother 54:1019CrossRefGoogle Scholar
  36. 36.
    Galeano B, Korff E, Nicholson WL (2003) Appl Environ Microbiol 69:4329CrossRefGoogle Scholar
  37. 37.
    Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Dent Mater 16(6):452CrossRefGoogle Scholar
  38. 38.
    Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) Infection 27:16CrossRefGoogle Scholar
  39. 39.
    Ong S, Wu J, Moochhala SM, Tan M, Lu J (2008) Biomaterials 29(32):4323CrossRefGoogle Scholar
  40. 40.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139CrossRefGoogle Scholar
  41. 41.
    Klasen HJ (2000) Burns 26(2):131CrossRefGoogle Scholar
  42. 42.
    Kim SS, Park JE, Lee J (2011) J Appl Polym Sci 119(4):2261CrossRefGoogle Scholar
  43. 43.
    Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) J Mater Sci Mater Med 20(11):2361CrossRefGoogle Scholar
  44. 44.
    Schierholz JM, Beuth J, Pulverer G, Konig DP (1999) Antimicrob Agents Chemother 43:2819CrossRefGoogle Scholar
  45. 45.
    Keleher J, Jennifer B, Heldt N, Johnson L, Li Y (2002) World J Microbiol Biotechnol 18:133CrossRefGoogle Scholar
  46. 46.
    Bellantone M, Williams HD, Hench LL (2002) Antimicrob Agents Chemother 46:1940CrossRefGoogle Scholar
  47. 47.
    Jeon HJ, Yi SC, Oh SG (2003) Biomaterials 24(27):4921CrossRefGoogle Scholar
  48. 48.
    Toshikazu T (1999) Inorg Mater 6:505Google Scholar
  49. 49.
    Catauro M, Raucci M, Gaetano G, De F, Marotta A (2004) J Mater Sci Mater Med 15:831CrossRefGoogle Scholar
  50. 50.
    Kawashita M, Toda S, Kim HM, Kokubo T, Masuda N (2003) J Biomed Mater Res A 66(2):266CrossRefGoogle Scholar
  51. 51.
    Ozdemir G, Limoncu MH, Yapar S (2010) Appl Clay Sci 48:319CrossRefGoogle Scholar
  52. 52.
    Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, Leon L, Freile-Pelerin Y, Lopez T, Torres Sanchez RM (2008) J Mol Catal A 281:192CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Zhong S, Zhang M, Lin Y (2009) J Mater Sci 44:457. doi: https://doi.org/10.1007/s10853-008-3129-5 CrossRefGoogle Scholar
  54. 54.
    Matsumura Y, Yoshikata K, Kunisaki S, Truchido T (2003) Appl Environ Microbiol 69(7):4278CrossRefGoogle Scholar
  55. 55.
    Kirov GN, Terziiski G (1997) In: Kirov G, Filizova L, Petrov O (eds) Natural zeolites Sofia’95. PENSOFT Publishers, Sofia-Moscow, pp 133–141Google Scholar
  56. 56.
    Inoue Y, Kanzaki Y (1997) J Inorg Biochem 67(1):377CrossRefGoogle Scholar
  57. 57.
    Hagiwara Z, Ishino H, Nohara S, Tagawa K, Yamanaka K (1990) US Patent 4,911,898; 4,911,899Google Scholar
  58. 58.
    Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) J Appl Microbiol 104(5):1516CrossRefGoogle Scholar
  59. 59.
    Lv L, Luo Y, Ng WJ, Zhao XS (2009) Microporous Mesoporous Mater 120:304CrossRefGoogle Scholar
  60. 60.
    De la Rosa-Gomez I, Olguin MT, Alcantara D (2010) J Mex Chem Soc 54(3):139Google Scholar
  61. 61.
    Concepcion-Rosabal B, Bogdanchikova N, De la Rosa I, Olguin MT, Alcantara D, Rodriguez-Fuentes G (2006) In: Book of the abstracts of the 7th international conference on the occurrence, properties and utilization of natural zeolites, pp 88–89Google Scholar
  62. 62.
    Concepcion-Rosabal B, Rodriguez-Fuentes G, Bogdanchikova N, Bosch P, Avalos M, Lara VH (2005) Microporous Mesoporous Mater 86:249CrossRefGoogle Scholar
  63. 63.
    Bright KR, Gerba CP, Rusin PA (2002) J Hosp Infect 52:307CrossRefGoogle Scholar
  64. 64.
    Koyama K, Takeuchi Y (1977) Z Kristallogr 145:216Google Scholar
  65. 65.
    Tanaka Y, Yamasaki N, Muratani M, Hino R (2003) Mater Res Bull 38:713CrossRefGoogle Scholar
  66. 66.
    Dibrov P (2002) Antimicrob Agents Chemother 46(8):2668CrossRefGoogle Scholar
  67. 67.
    Arcoya A, Gonzales JA, Llabel G, Seona XL, Travieso N (1996) Microporous Mater 7:1CrossRefGoogle Scholar
  68. 68.
    Woods RM, Gunter ME (2001) Am Mineral 86:424CrossRefGoogle Scholar
  69. 69.
    Breck DW (1974) Zeolites molecular sieves: structure, chemistry and use. John Wiley & Sons Inc, New YorkGoogle Scholar
  70. 70.
    Szostak R (1992) Handbook of molecular sieves. Van Nostrand Reinhold, New York, pp 126–132Google Scholar
  71. 71.
    JCPDS Powder Diffraction File (1973) File No. 22-1236Google Scholar
  72. 72.
    Watanabe Y, Yamada H, Tanaka J, Moriyoshi Y (2005) J Chem Technol Biotechnol 80:376CrossRefGoogle Scholar
  73. 73.
    Korkuna O, Leboda R, Skubiszewska-Zieba, Vrubelvs’ka T, Gun’ko VM, Ryczkowski J (2005) Microporous Mesoporous Mater 87:243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Violeta Elena Copcia
    • 1
    Email author
  • Camelia Luchian
    • 1
  • Simona Dunca
    • 2
  • Nicolae Bilba
    • 1
  • Claudia Mihaela Hristodor
    • 1
  1. 1.Materials Chemistry Laboratory, Faculty of Chemistry“Al. I. Cuza” University of IasiIasiRomania
  2. 2.Faculty of Biology“Al. I. Cuza” University of IasiIasiRomania

Personalised recommendations