Journal of Materials Science

, Volume 46, Issue 20, pp 6718–6725 | Cite as

Superabsorbent polymer composites: does clay always improve properties?

  • K. KabiriEmail author
  • S. Hesarian
  • M. J. Zohuriaan-Mehr
  • A. Jamshidi
  • H. Boohendi
  • M. R. Pourheravi
  • S. A. Hashemi
  • H. Omidian
  • S. Fathollahi


Clay is frequently incorporated to many materials including superabsorbent polymers (SAPs) to improve their properties. Superior properties have been reported for the SAP composite (SAPC) materials comparing to their clay-free counterparts. However, study of the effect of clay on some of very important requirements of superabsorbents, particularly the residual monomer (RM), has been unnoticed in the academic literature. Here, we report preparation of a series of SAPCs via a conventional solution polymerization of partially neutralized acrylic acid in the presence of common MMT clay (Na-montmorillonite). The products were characterized by FTIR spectroscopy, differential scanning calorimetry, thermogravimetric, thermomechanical, and rheometrical analyses. The RM content of the samples was determined by high performance liquid chromatography. It was found that the clay had unfavorable effects on the crosslinking polymerization process. This fact was observed as declining mechanical strength of the SAPCs in both dried and swollen states, increased swelling capacity, decreased gel fraction, and increased RM content. For instance, RM of clay-free sample was 740 ppm which was continuously increased with level of the clay incorporated. It surprisingly reached to ~34,000 ppm at clay content of 12%. The undesirable function of clay was attributed to inactivation and barrier effects of clay incorporated to the polymerization medium. These unwanted effects were more pronounced at high clay content. However, overall thermostability of SAPCs was improved comparing to the non-composite counterpart. It was concluded that such conventionally prepared SAPCs, in spite of the previously reported claims, could not be suitable candidates for hygienic applications, particularly those prepared with high clay percentages.


High Performance Liquid Chromatography Acrylic Acid Storage Modulus Clay Content Dynamic Mechanical Thermal Analysis 


  1. 1.
    Buchholz FL, Graham T (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York, p 252Google Scholar
  2. 2.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 17:451Google Scholar
  3. 3.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) J Mater Sci 45:5711. doi: CrossRefGoogle Scholar
  4. 4.
    Kabiri K, Zohuriaan-Mehr MJ, Bouhendi H, Jamshidi A, Khan-Beigi FA (2009) J Appl Polym Sci 114:2533CrossRefGoogle Scholar
  5. 5.
    Kabiri K, Hesarian S, Zohuriaan-Mehr MJ, Jamshidi A, Boohendi H, Pourheravi MR, Hashemi SA, Khan-Beigi FA (2011) J Appl Polym Sci 120:2716CrossRefGoogle Scholar
  6. 6.
    Kabiri K, Zohuriaan-Mehr MJ (2004) Macromol Mater Eng 289:653CrossRefGoogle Scholar
  7. 7.
    Kabiri K, Zohuriaan-Mehr MJ (2003) Polym Adv Technol 14:438CrossRefGoogle Scholar
  8. 8.
    Yi JZ, Zhang LM (2007) Eur Polym J 43:3215CrossRefGoogle Scholar
  9. 9.
    Li A, Zhang JP, Wang AQ (2007) Bioresour Technol 98:327CrossRefGoogle Scholar
  10. 10.
    Pourjavadi A, Hosseinzadeh H, Mahdavinia GR, Zohuriaan-Mehr MJ (2007) Polym Polym Compos 15:43Google Scholar
  11. 11.
    Gao D (2003) Ph.D. Thesis, Freiburg University, GermanyGoogle Scholar
  12. 12.
    Su XF, Zhang G, Xu K, Wang JH, Song CL, Wang PX (2008) Polym Bull 60:69CrossRefGoogle Scholar
  13. 13.
    Lee WF, Yang LG (2004) J Appl Polym Sci 92:3422CrossRefGoogle Scholar
  14. 14.
    Santiago F, Mucientes AE, Osorio M, Poblete FJ (2006) Polym Int 55:843CrossRefGoogle Scholar
  15. 15.
    Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2009) Polym Int 58:1252CrossRefGoogle Scholar
  16. 16.
    Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2010) J Appl Polym Sci 116:2548Google Scholar
  17. 17.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Polym Compos 32:277CrossRefGoogle Scholar
  18. 18.
    Jamshidi A, Khan-Beigi FA, Kabiri K, Zohuriaan-Mehr MJ (2005) Polym Test 24:824CrossRefGoogle Scholar
  19. 19.
    Ramazani-Harandy MJ, Zohuriaan-Mehr MJ, Ershad-Langroudi A, Yousefi AA, Kabiri K (2006) Polym Test 25:470CrossRefGoogle Scholar
  20. 20.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) J Polym Mater 20:17Google Scholar
  21. 21.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Eur Polym J 39:1341CrossRefGoogle Scholar
  22. 22.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ (2003) Polym Int 52:1158CrossRefGoogle Scholar
  23. 23.
    Kabiri K, Zohuriaan-Mehr MJ (2004) Iran Polym J 13:423Google Scholar
  24. 24.
    Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A (2005) J Macromol Sci Pure Appl Chem 42:1655CrossRefGoogle Scholar
  25. 25.
    Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) J Appl Polym Sci 110:3420CrossRefGoogle Scholar
  26. 26.
    Yavari-Gohar MR, Kabiri K, Zohuriaan-Mehr MJ, Hashemi SA (2010) J Polym Res 17:151CrossRefGoogle Scholar
  27. 27.
    Chen G, Liu S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189CrossRefGoogle Scholar
  28. 28.
    Ibrahim M, Nada A, Kamal DE (2005) Indian J Pure Appl Phys 43:911Google Scholar
  29. 29.
    Kim HS, Chen GX, Jin HJ, Yoon JS (2008) Colloids Surf A Physicochem Eng Aspects 313:56CrossRefGoogle Scholar
  30. 30.
    Lpoittevin B, Devalckenaere M, Patoustier N, Alexander M, Kubies D, Calberg C (2002) Polymer 43:4017CrossRefGoogle Scholar
  31. 31.
    Haraguchi K, Takenisa T, Fan S (2002) Macromolecules 35:10162CrossRefGoogle Scholar
  32. 32.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1CrossRefGoogle Scholar
  33. 33.
    Jiang H, Su W, Mather PT, Bunning TJ (1999) Polymer 40:4593CrossRefGoogle Scholar
  34. 34.
    Chan CK, Chu IM (2001) Polymer 42:6089CrossRefGoogle Scholar
  35. 35.
    Li L, Hsieh YL (2005) Nanotechnology 16:2852CrossRefGoogle Scholar
  36. 36.
    Huang Y, Lu J, Xiao C (2007) Polym Degrad Stab 92:1072CrossRefGoogle Scholar
  37. 37.
    Kabiri K, Azizi A, Zohuriaan-Mehr MJ, Bagheri Marandi G, Bouhendi H (2011) J Appl Polym Sci 119:2759CrossRefGoogle Scholar
  38. 38.
    Yen MH, Lin KF (2009) J Polym Sci Part B Poly Phys 47:524CrossRefGoogle Scholar
  39. 39.
    Ren Q, Shi TJ, Wang HL, Zhou YB, Zhai LF (2003) J Funct Polym (a Chinese Journal). doi: ISSN:1008-9357.0.2003-04-007Google Scholar
  40. 40.
    Liu PS, Li L, Zhou NL, Zhang J, Wei SH, Shen J (2006) J Appl Polym Sci 102:5725CrossRefGoogle Scholar
  41. 41.
    Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2009) J Appl Polym Sci 113:3676CrossRefGoogle Scholar
  42. 42.
    Pourjavadi A, Kheirabadi M, Zohuriaan-Mehr MJ, Kabiri K (2009) J Appl Polym Sci 114:3542CrossRefGoogle Scholar
  43. 43.
    Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) J Appl Polym Sci 120:3453CrossRefGoogle Scholar
  44. 44.
    Wu JH, Lin JM, Li GQ, Wei CR (2001) Polym Int 50:1050CrossRefGoogle Scholar
  45. 45.
    Wu JH, Wei YL, Lin HM, Lin SB (2003) Polymer 44:6513CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Kabiri
    • 1
    Email author
  • S. Hesarian
    • 2
  • M. J. Zohuriaan-Mehr
    • 1
  • A. Jamshidi
    • 1
  • H. Boohendi
    • 1
  • M. R. Pourheravi
    • 2
  • S. A. Hashemi
    • 1
  • H. Omidian
    • 3
  • S. Fathollahi
    • 4
  1. 1.Department of Color, Resin and Surface CoatingsIran Polymer and Petrochemical Institute (IPPI)TehranIran
  2. 2.Department of ChemistryPayam Nour UniversityAbharIran
  3. 3.College of PharmacyNova Southeastern UniversityFort LauderdaleUSA
  4. 4.Central LaboratoriesIran Polymer and Petrochemical Institute (IPPI)TehranIran

Personalised recommendations