Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6700–6708 | Cite as

Modeling of the wear behavior in A356–B4C composites

  • Mohsen Ostad Shabani
  • Ali Mazahery
Article

Abstract

In this study, attempts were made to coat the boron carbide (B4C) powders with TiB2 via a sol–gel process. Different volume fraction of coated B4C particles were incorporated into the aluminum alloy by a mechanical stirrer and wear properties of unreinforced A356 alloy and composites with different vol% of coated B4C particles were experimentally investigated. Further study was carried out on the performance of artificial neural network (ANN) in prediction of the composites wear behavior. The finite element technique was implemented to obtain two of the inputs, cooling rate and temperature gradient. It is observed that predictions of ANN are consistent with experimental measurements for A356 composite and considerable savings in terms of cost and time could be obtained by using neural network model.

Keywords

Artificial Neural Network Hide Layer Wear Rate Boron Carbide Eutectic Silicon 

References

  1. 1.
    Samuel AM, Gotmare A, Samuel FH (1995) Compos Sci Technol 53:301CrossRefGoogle Scholar
  2. 2.
    Chung S, Hwang BH (1994) Tribol Int 27(5):307CrossRefGoogle Scholar
  3. 3.
    Mazahery A, Shabani MO, Salahi S (2011) Materials science and Technology. Maney Publishing, LeedsGoogle Scholar
  4. 4.
    Lim SC, Gupta M, Ren L, Kwok JKM (1999) J Mater Process Technol 89–90:591–596CrossRefGoogle Scholar
  5. 5.
    Bindumadhavan PN, Chia TK, Chandrasekaran M, Wah HK, Lam LN, Prabhakar O (2001) Mater Sci Eng A 315:217CrossRefGoogle Scholar
  6. 6.
    Roy M, Venkataraman B, Bhanuprasad VV, Mahajan YR, Sundararajan G (1992) Metall Trans A 23:2833CrossRefGoogle Scholar
  7. 7.
    Skolianos S, Kattamis TZ (1993) Mater Sci Eng A 163:107CrossRefGoogle Scholar
  8. 8.
    Surappa MK, Prasad SV, Rohatgi PK (1982) Wear 77:295CrossRefGoogle Scholar
  9. 9.
    Bindumadhavan PN, Wah HK, Prabhakar O (2001) Wear 248:112CrossRefGoogle Scholar
  10. 10.
    Kwok JKM, Lim SC (1999) Compos Sci Technol 59:55CrossRefGoogle Scholar
  11. 11.
    Das S, Mondal DP, Dixit G (2001) Metall Mater Trans A 32:633CrossRefGoogle Scholar
  12. 12.
    Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) J Mater Sci 32:4559. doi: https://doi.org/10.1023/A:1018625402103 CrossRefGoogle Scholar
  13. 13.
    Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  14. 14.
    Blumenthal WR, Gray GT III, Claytor TN (1994) J Mater Sci 29:4567. doi: https://doi.org/10.1007/BF00376280 CrossRefGoogle Scholar
  15. 15.
    Pyzik AJ, Aksay IA, Sarikaya M (1986) Mater Sci Res 21:45Google Scholar
  16. 16.
    Pyzik AJ, Aksay IA (1989) Processing of ceramic and metal matrix composites. Pergamon Press, New York, p 269CrossRefGoogle Scholar
  17. 17.
    Pyzik AJ, Beaman DR (1995) J Am Ceram Soc 78:305CrossRefGoogle Scholar
  18. 18.
    Rhee SK (1970) J Am Ceram Soc 53:386CrossRefGoogle Scholar
  19. 19.
    Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT (2009) J Mater Process Technol 209:894CrossRefGoogle Scholar
  20. 20.
    Karimzadeh F, Ebnonnasir A, Foroughi A (2006) Mater Sci Eng A 432:184CrossRefGoogle Scholar
  21. 21.
    Altinkok N, Koker R (2004) Mater Des 25:595CrossRefGoogle Scholar
  22. 22.
    Singh SK, Mahesh K, Gupta AK (2010) Mater Des 31:2288CrossRefGoogle Scholar
  23. 23.
    Lisboa PJ, Taktak AFG (2006) Neural Netw 19:408CrossRefGoogle Scholar
  24. 24.
    Ostad Shabani M, Mazahery A (2011) Int J Appl Math Mech 7:89Google Scholar
  25. 25.
    Rashidi AM, Eivani AR, Amadeh A (2009) Comput Mater Sci 45:499CrossRefGoogle Scholar
  26. 26.
    Mousavi Anijdan SH, Bahrami A, Madaah Hosseini HR, Shafyei A (2006) Mater Des 27:605CrossRefGoogle Scholar
  27. 27.
    Hwang R-C, Chen Y-J, Huang H-C (2010) Expert Syst Appl 37:3136CrossRefGoogle Scholar
  28. 28.
    Fratini L, Buffa G, Palmeri D (2009) Comput Struct 87:1166CrossRefGoogle Scholar
  29. 29.
    Hamzaoui R, Cherigui M, Guessasm S, ElKedim O, Fenineche N (2009) Mater Sci Eng B 163:17CrossRefGoogle Scholar
  30. 30.
    Reddy NS, Prasada Rao AK, Chakraborty M, Murty BS (2005) Mater Sci Eng A 391:131CrossRefGoogle Scholar
  31. 31.
    Lloyd DJ, Chamberian B (1988) Cast reinforced metal composites. ASM, Illinois, p 263Google Scholar
  32. 32.
    Ray S (1988) In: Proceedings of the survey on fabrication methods of cast reinforced metal composites, p 77, ASM/TMS, 1988Google Scholar
  33. 33.
    Rana F, Stefanescu DM (1989) Metall Mater Trans A 20:1564CrossRefGoogle Scholar
  34. 34.
    Nagarajan S, Dutta B (1999) Compos Sci Technol 59:897CrossRefGoogle Scholar
  35. 35.
    Zhou W, Xu ZM, Mater J (1997) Process Technol 63:358CrossRefGoogle Scholar
  36. 36.
    Ludema KC (1984) Wear 100:315CrossRefGoogle Scholar
  37. 37.
    Lim SC, Ashby MF (1987) Acta Metall 35:lGoogle Scholar
  38. 38.
    Razavizadeh K, Tyre TS (1982) Wear 79:325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials and Energy Research Center (MERC)TehranIran
  2. 2.School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations