Journal of Materials Science

, Volume 46, Issue 20, pp 6690–6699 | Cite as

Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides

  • M. Patel
  • K. S. Moon
  • S. K. Kassegne
  • K. MorsiEmail author


This article discusses the processing and properties of titanium nickelides locally sintered via Current-Activated Tip-based Sintering (CATS), a new localized sintering process. One of the advantages of CATS is the ability to apply orders of magnitude higher current densities than conventionally possible, which can promote rapid sintering and phase transformation rates. Mechanically alloyed equi-atomic Ni–Ti powder was for the first time tip sintered at varying current intensities and cumulative current exposure time. The effect of current-control processing conditions on the evolution of the locally sintered Ni–Ti microstructure and properties are discussed. The size of the locally sintered process zone was found to increase with cumulative current exposure time. The degree of sintering, phase transformations, and properties were found to depend on the current intensity, cumulative current exposure time and distance away from the tip/compact interface. Fully/near fully dense material was achieved rapidly at locations exposed to the highest current densities.


Mechanical Alloy Spark Plasma Sinter Process Zone Ni3Ti Titanium Nickelides 



The authors express their thanks to Dr. Steve Barlow and Ms. Joan Kimbrough for their help with electron microscopy and XRD. Thanks are also to Mr. Greg Morris and Mr. Mike Lester for general technical support. The authors also wish to thank The National Science Foundation (CMMI division: grant no. 0826532) for their support.


  1. 1.
    Jin JL, Chi YH (2002) Mater Sci Forum 394–395:241CrossRefGoogle Scholar
  2. 2.
    Zhang L, Xie C, Wu J (2006) Mater Sci Eng A438–440:905CrossRefGoogle Scholar
  3. 3.
    Vermaut Ph, Ochin P, Dezellus A, Plaindoux Ph, Dalle F, Muguerra Ph, Portier R (2002) Mater Science Forum 394–395:483CrossRefGoogle Scholar
  4. 4.
    Cheng X, Li Z, Xiang G (2007) J Mater Design 28(7):2218CrossRefGoogle Scholar
  5. 5.
    Li Z, Xiang G, Cheng X (2006) J Mater Design 27(4):324CrossRefGoogle Scholar
  6. 6.
    Hey JC, Jardine AP (1994) Mater Sci Eng A188(1–2):291CrossRefGoogle Scholar
  7. 7.
    Takasaki A (1998) Phys Stat Sol A 169:183CrossRefGoogle Scholar
  8. 8.
    Schuller E, Krone L, Bram M, Buchkremer HP, Stover D (2004) J Mat-iss.u Werkstofftech 35(5):326CrossRefGoogle Scholar
  9. 9.
    Zhang N, Babayan Khosrovabadi P, Lindenhovius JH, Kolster BH (1992) J Mater Sci Eng A150(2):263CrossRefGoogle Scholar
  10. 10.
    McNeese MD, Lagoudas DC, Pollock TC (2000) J Mater Sci Eng A 280(2):334CrossRefGoogle Scholar
  11. 11.
    Fu YQ, Gu YW, Shearwood C, Luo JK, Flewitt AJ, Milne WI (2006) J Nanotechnology 17(21):5293CrossRefGoogle Scholar
  12. 12.
    Morsi K, Patel VV, Moon KS, Garay JE (2008) J Mater Sci 43(12):4050. doi: CrossRefGoogle Scholar
  13. 13.
    Munir ZA, Anselmi-Tamburini U (2006) J Mater Sci 41(3):763. doi: CrossRefGoogle Scholar
  14. 14.
    Grasso S, Sakka Y, Maizza G (2009) Sci Technol Adv Mater 10:053001CrossRefGoogle Scholar
  15. 15.
    Abadie J, Chaillet N, Lexcellent C, Bourjault A (1999) Proc SPIE Int Soc Opt Eng 3667:326Google Scholar
  16. 16.
    Yung KC, Zhu HH (2005) J Smart Mater Struct 14(2):337CrossRefGoogle Scholar
  17. 17.
    Schuller E, Krone L, Bram M, Buchkremer HP, Stover D (2005) J Mater Sci 40(16):4231. doi: CrossRefGoogle Scholar
  18. 18.
    Morsi K, Moon K, Kassegne S, Ugle R, Villar E (2009) Scripta Mater 60(9):745CrossRefGoogle Scholar
  19. 19.
    Morsi K, Moon KS, Current activated tip-based sintering, PCT/US2009/35616 (pending)Google Scholar
  20. 20.
    Locci AM, Orrùb R, Cao G, Munir ZA (2003) Intermetallics 11:555CrossRefGoogle Scholar
  21. 21.
    Koch CC (1989) Ann Rev Mater Sci 19:121CrossRefGoogle Scholar
  22. 22.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  23. 23.
    Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Mater Sci Eng A394:1332Google Scholar
  24. 24.
    Zoz H, Ernst D, Ahn IS, Kwon WH (1997) In: Ward-Close CM, Froes FH, Cho SS, Chellman DJ (eds) Synthesis/processing of lightweight metallic materials. TMS, WarrendaleGoogle Scholar
  25. 25.
    Otsuka K, Wayman CM (1988) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Bertheville B, Bidaux J-E (2005) Scripta Mater 52:507CrossRefGoogle Scholar
  27. 27.
    Shearwood C, Fu YQ, Yu L, Khor KA (2005) Scripta Mater 52:455CrossRefGoogle Scholar
  28. 28.
    Schuller E, Bram M, Buchkremer HP, Stover D (2004) Mater Sci Eng A378:165CrossRefGoogle Scholar
  29. 29.
    Bram M, Ahmad-Khanlou A, Heckmann A, Fuchs B, Buchkremer HP, Stover D (2002) Mater Sci Eng A337:254CrossRefGoogle Scholar
  30. 30.
    Krone L, Schuller E, Bram M, Hamed O, Buschkremer H-P, Stover D (2004) Mater Sci Eng A378:185CrossRefGoogle Scholar
  31. 31.
    Ye LL, Liu ZG, Raviprasad K, Quan MX, Umemoto M, Hu ZQ (1998) Mater Sci Eng A241:290CrossRefGoogle Scholar
  32. 32.
    Luo H, Shan F, Huo Y, Wang Y (1999) Thin Solid Films 339:305CrossRefGoogle Scholar
  33. 33.
    Frenzel J, George EP, Dlouhy A, Somsen Ch, Wagner MF-X, Eggeler G (2010) Acta Mater 58:3444CrossRefGoogle Scholar
  34. 34.
    Hiraga H, Inoue T, Shimura H, Matsunawa A (1999) Wear 231:272CrossRefGoogle Scholar
  35. 35.
    Tan L, Crone WC (2002) Acta Mater 50:4449CrossRefGoogle Scholar
  36. 36.
    Conrad H (2002) Mater Sci Eng A287:227Google Scholar
  37. 37.
    Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Acta Mater 51(15):4487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Patel
    • 1
  • K. S. Moon
    • 1
  • S. K. Kassegne
    • 1
  • K. Morsi
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringSan Diego State University (SDSU)San DiegoUSA

Personalised recommendations