Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6673–6681 | Cite as

Friction and wear behavior of the polyurethane composites reinforced with potassium titanate whiskers under dry sliding and water lubrication

  • Gai Zhao
  • Tingmei WangEmail author
  • Qihua Wang
Article

Abstract

A series of polyurethane (PU)/potassium titanate whiskers (PTW) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The PTW is modified by 2,4-diisocyanatotoluene (2,4-TDI). The effect of the PTW content on the mechanical and tribological properties of the PU composites was studied. Tensile strength of the PU composites increased with the addition of PTW. The friction and wear experiments were tested on a MRH-3 model ring-on-block test rig at different sliding speeds and loads under dry sliding and water lubrication. Experimental results revealed that the small content of PTW contributed to largely improve the tribological properties of the PU composites. The coefficient of friction (COF) of the composites increased and the wear rate value decreased with increasing PTW. Scanning electron microscopic (SEM) investigations showed that the worn surfaces of the PTW-reinforced PU composites was smoother than pure polyurethane under given load and sliding speed.

Keywords

Polyurethane Wear Rate Wear Surface Tribological Property Specific Wear Rate 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the Innovative Group Foundation of NSFC (Grant No. 50721062) and the financial support of the National 973 project of China (2007CB607606).

References

  1. 1.
    Queiroz DP, Pinho MN (2005) Polymer 46:2346CrossRefGoogle Scholar
  2. 2.
    Stanciu A, Airinei A, Oprea S (2001) Polymer 42:6081CrossRefGoogle Scholar
  3. 3.
    Sonnenschein MF, Lysenko Z, Brune DA, Wendt BL, Schrock AK (2005) Polymer 46:10158CrossRefGoogle Scholar
  4. 4.
    Halberstadt ML, Rhee SK, Mansfield JA (1978) Wear 46:379CrossRefGoogle Scholar
  5. 5.
    Varelidis PC, McCullough RL, Papaspyrides CD (1999) Compos Sci Technol 59:1813CrossRefGoogle Scholar
  6. 6.
    Liang GZ, Hu XL, Lu TL (2005) J Mater Sci 40:1743. doi: https://doi.org/10.1007/s10853-005-0677-9 CrossRefGoogle Scholar
  7. 7.
    Wang HY, Zhu YJ, Feng X, Lu XH (2010) Wear 269:139CrossRefGoogle Scholar
  8. 8.
    Chen LF, Hong YP, Zhang Y, Qiu JL (2000) J Mater Sci 35:5309. doi: https://doi.org/10.1023/A:1004886510414 CrossRefGoogle Scholar
  9. 9.
    Basova YV, Hatori H, Yamada Y, Miyashita K (1999) Electrochem Commun 1:540CrossRefGoogle Scholar
  10. 10.
    Theodoridou E, Jannakoudakis AD, Jannakoudakis PD, Andonoglou P, Besenhard JQ (1997) Synth Metals 87:225CrossRefGoogle Scholar
  11. 11.
    Suganuma K, Minakuchi H, Kada K, Kitamura T, Osafune H, Fujii H (1993) J Mater Res 8(1):178CrossRefGoogle Scholar
  12. 12.
    Ning NY, Luo F, Wang K, Du RN, Zhang Q, Chen F, Fu Q (2009) Polymer 50:3851CrossRefGoogle Scholar
  13. 13.
    Xie GY, Zhuang GS, Sui GX, Yang R (2010) Wear 268:424CrossRefGoogle Scholar
  14. 14.
    Mu LW, Feng X, Zhu JH, Wang HY, Sun QJ, Shi YJ, Lu XH (2010) Tribol T 53:189CrossRefGoogle Scholar
  15. 15.
    Zhang ZZ, Song HJ, Men XH, Luo ZZ (2008) Wear 264:599CrossRefGoogle Scholar
  16. 16.
    Song HJ, Zhang ZZ, Men XH, Luo ZH (2010) Wear 269:79CrossRefGoogle Scholar
  17. 17.
    Song HJ, Zhang ZZ, Luo ZZ (2006) Surf Coat Technol 201:2760CrossRefGoogle Scholar
  18. 18.
    Song HJ, Zhang ZZ (2006) Mater Sci Eng A 424:340CrossRefGoogle Scholar
  19. 19.
    Song HJ, Zhang ZZ, Men XH (2008) Eur Polym J 44:1012CrossRefGoogle Scholar
  20. 20.
    Song HJ, Zhang ZZ, Men XH (2007) Eur Polym J 43:4092CrossRefGoogle Scholar
  21. 21.
    Song HJ, Zhang ZZ, Men XH (2008) Compos Part A 39:188CrossRefGoogle Scholar
  22. 22.
    Wan YZ, Luo HL, Wang YL, Huang Y, Li QY, Zhou FG (2005) J Mater Sci 40:4475. doi: https://doi.org/10.1007/s10853-005-1171-0 CrossRefGoogle Scholar
  23. 23.
    Friedrich K, Lu Z, Hager AM (1993) Theor Appl Fract Mech 19:1CrossRefGoogle Scholar
  24. 24.
    Turssi CP, Purqueerio BM, Serra MC (2003) J Biomed Mater Res Part B 65B:280CrossRefGoogle Scholar
  25. 25.
    Vishwanath B, Verma AP, Kameswara Rao CVS (1991) Wear 145:315CrossRefGoogle Scholar
  26. 26.
    Evans DC (1978) Polymer-fluid interaction in relation to wear. In: Proceedings of the third leeds-lyon symposium on tribology, the wear of non-metallic materials. Mechanical Engineering Publication Ltd., London, pp 47–55Google Scholar
  27. 27.
    Srinath G, Gnanamoorthy R (2007) Compos Sci Technol 67:399CrossRefGoogle Scholar
  28. 28.
    Jia JH, Chen JM, Zhou HD, Wang JB, Zhou H (2004) Tribol Int 37:423CrossRefGoogle Scholar
  29. 29.
    Jia JH, Chen JM, Zhou HD, Hu LT, Chen L (2005) Compos Sci Technol 65:1139CrossRefGoogle Scholar
  30. 30.
    Wang LF, Ji Q, Glass TE, Ward TC, McGrath JE, Muggli M, Burns G, Sorathia U (2000) Polymer 41:5083CrossRefGoogle Scholar
  31. 31.
    Yeganeh H, Shamekhi MA (2004) Polymer 45:359CrossRefGoogle Scholar
  32. 32.
    Chang L, Zhang Z, Ye L, Friedrich K (2007) Tribol Int 40:1170CrossRefGoogle Scholar
  33. 33.
    Bahadur S, Gong DL (1992) Wear 154:151CrossRefGoogle Scholar
  34. 34.
    Voort JV, Bahadur S (1995) Wear 181:212CrossRefGoogle Scholar
  35. 35.
    Madhavan K, Reddy BS (2009) J Appl Polym Sci 113:4052CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations