Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6656–6663 | Cite as

Poly(vinylidene fluoride)/poly(methyl methacrylate)/TiO2 blown films: preparation and surface study

  • Weihua TangEmail author
  • Tiange Zhu
  • Peipei Zhou
  • Wei Zhao
  • Qian Wang
  • Gang Feng
  • Huilin YuanEmail author
Article

Abstract

Blown films of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) blends and PVDF/PMMA/TiO2 composites were prepared by melting-extrusion for the first time. The crystalline structure and surface morphology PVDF/PMMA (DFMA) blown films were investigated using differential scanning calorimeter (DSC), atomic force microscope (AFM), and X-ray diffractometry (XRD). PVDF/PMMA/TiO2 blown films were further prepared and underwent surface treatment. The results show that PVDF/PMMA/TiO2 blown films present good mechanical properties, and acrylic acid surface-grafted films exhibit good adhesion capability and long-lasting hydrophilicity, making them attractive as encapsulation materials.

Keywords

PMMA PVDF Acrylic Acid Water Contact Angle Vinylidene Fluoride 

Notes

Acknowledgements

This work was partially supported by Nanjing University of Science and Technology. The authors acknowledge the financial support from Foundation of Key Laboratory of Luminescence and Optical Information (2010LOI04), and NUST Research Funding (NO. 2010ZDJH04).

References

  1. 1.
    Matras-Postolek M, Bogdal D (2010) Adv Polym Sci 230:221CrossRefGoogle Scholar
  2. 2.
    Hietala S, Holmberg S, Karjalainen M, Paronen M, Serimaa R, Sundholm F, Vahvaselkä S (1997) J Mater Chem 7:721CrossRefGoogle Scholar
  3. 3.
    He F, Fan J, Lau S (2008) Polym Test 27:964CrossRefGoogle Scholar
  4. 4.
    Mawson S, Johnston KP, Combes JR, DeSimone JM (1995) Macromolecules 28:3182CrossRefGoogle Scholar
  5. 5.
    Scheinbeim JI (1999) In: Mark JE (ed) Poly(vinylidene fluoride). Oxford University Press Inc, New YorkGoogle Scholar
  6. 6.
    Gregorio R Jr, Cestari M (1994) J Polym Sci B 32:859CrossRefGoogle Scholar
  7. 7.
    Tazaki M, Wada R, Okabe M, Homma T (1997) J Appl Polym Sci 65:1517CrossRefGoogle Scholar
  8. 8.
    Cheng LP (1999) Macromolecules 32:6668CrossRefGoogle Scholar
  9. 9.
    Salimi A, Yousefi AA (2004) J Polym Sci B 42:3487CrossRefGoogle Scholar
  10. 10.
    Hsu CC, Geil PH (1989) J Mater Sci 24:1219. doi: https://doi.org/10.1007/BF02397050 CrossRefGoogle Scholar
  11. 11.
    Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG (2008) J Non Cryst Solids 354:72CrossRefGoogle Scholar
  12. 12.
    Chen N, Hong L (2002) Polymer 43:1429CrossRefGoogle Scholar
  13. 13.
    Ma W, Zhang J, Wang X, Wang S (2007) Appl Surf Sci 253:8377CrossRefGoogle Scholar
  14. 14.
    Alfonso GC, Turturro A, Pizzoli M, Scandola M, Ceccorulli G (1989) J Polym Sci B 27:1195CrossRefGoogle Scholar
  15. 15.
    Kammer H-W, Macromol J, Sci A (1990) Pure Appl Chem 27:1713Google Scholar
  16. 16.
    Yang HH, Han CD, Kim JK (1994) Polymer 35:1503CrossRefGoogle Scholar
  17. 17.
    Nunes SP, Peinemann KV (2001) In: Nunes SP, Peinemann KV (eds) Membrane technology in the chemical industry. Wiley–VCH, WeinheinCrossRefGoogle Scholar
  18. 18.
    Lee WK, Ha CS (1998) Polymer 39:7131CrossRefGoogle Scholar
  19. 19.
    Pralay M, Nandi AK (1998) Polymer 39:413CrossRefGoogle Scholar
  20. 20.
    Ma W, Zhang J, Wang X (2008) Appl Surf Sci 254:2947CrossRefGoogle Scholar
  21. 21.
    Sasaki H, Bala KP, Yoshida H, lto E (1995) Polymer 36:4805CrossRefGoogle Scholar
  22. 22.
    Roerdink E, Challa G (1978) Polymer 19:173CrossRefGoogle Scholar
  23. 23.
    Hourston DJ, Hughes ID (1977) Polymer 18:1175CrossRefGoogle Scholar
  24. 24.
    Hang C, Zhang L (2004) J Appl Polym Sci 92:1CrossRefGoogle Scholar
  25. 25.
    Nunes SP, Peinemann KV (1992) J Memb Sci 73:25CrossRefGoogle Scholar
  26. 26.
    Ochoa NA, Masuelli M, Marchese J (2003) J Memb Sci 226:203CrossRefGoogle Scholar
  27. 27.
    Lin SC, Argasinski K (1999) In: Hougham G, Cassidy PE, Johns K, Davidson T (eds) Fluoropolymer alloys performance optimization of PVDF alloys. Plenum Press, New YorkGoogle Scholar
  28. 28.
    Gregorio R Jr (2006) J Appl Polym Sci 100:3272CrossRefGoogle Scholar
  29. 29.
    Rocha IS, Mattoso LHC, Malmonge LF, Gregório R Jr (1999) J Polym Sci B 37:1219CrossRefGoogle Scholar
  30. 30.
    Raghavan D, Gu X, Nguyen T, Van Landingham M, Karim A (2000) Macromolecules 33:2573CrossRefGoogle Scholar
  31. 31.
    Adachi S, Arai T, Kobayashi K (1996) J Appl Phys 80:5422CrossRefGoogle Scholar
  32. 32.
    Richards BS (2004) Prog Photovolt Res Appl 12:253CrossRefGoogle Scholar
  33. 33.
    Pern FJ, Glick SH (2000) Sol Energy Mater Sol Cells 61:153CrossRefGoogle Scholar
  34. 34.
    Iwata H, Kishida A, Suzuki M, Hata Y, Ikada Y (1988) J Polym Sci A 26:3309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Soft Chemistry and Functional MaterialsNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations