Journal of Materials Science

, Volume 46, Issue 20, pp 6627–6632 | Cite as

Growth of Al2O3 thin film by oxidation of resistively evaporated Al on top of SnO2, and electrical properties of the heterojunction SnO2/Al2O3

  • Jorge L. B. MacielJr.
  • Emerson A. Floriano
  • Luis V. A. ScalviEmail author
  • Leandro P. Ravaro


Aiming for the investigation of insulating properties of aluminum oxide (Al2O3) layers, as well as the combination of this oxide with tin dioxide (SnO2) for application in transparent field effect transistors, Al thin films are deposited by resistive evaporation on top of SnO2 thin films deposited by sol–gel dip-coating process. The oxidation of Al films to Al2O3 are carried out by thermal annealing at 500 °C in room conditions or oxygen atmosphere. X-ray diffraction data indicate that tetragonal Al2O3 is indeed obtained. A simple device and electric circuit is proposed to measure the insulating properties of aluminum oxide and the transport properties of SnO2 as well. Results indicate a fair insulation when four layers or Al2O3 are grown on the tin dioxide film, concomitant with thermal annealing between each layer. The current magnitude through the insulating layer is only 0.2% of the current through the semiconductor film, even though the conductivity of the SnO2 alone is not very high (the average resistivity is 2 Ω cm), because no doping is used. The presented results are a good indication that this combination may be useful for transparent devices.


SnO2 Thermal Annealing Drain Current Alumina Layer SnO2 Film 



Authors would like to thank Brazilian financial sources: CAPES, CNPq, and FAPESP.


  1. 1.
    Wu YQ, Xuan Y, Shen T, Ye PD (2007) Appl Phys Lett 91:022108CrossRefGoogle Scholar
  2. 2.
    Wu YQ, Ye PD, Wilk GD, Yang B (2006) Mater Sci Eng B 135:282CrossRefGoogle Scholar
  3. 3.
    Lin HC, Ye PD, Wilk GD (2006) Solid State Electron 50:1012CrossRefGoogle Scholar
  4. 4.
    Srikanth S, Karmalkar S (2008) IEEE Trans Electron Dev 55:3562CrossRefGoogle Scholar
  5. 5.
    Xuan Y, Lin HC, Ye PD (2006) Appl Phys Lett 88:263518CrossRefGoogle Scholar
  6. 6.
    Crupi I, Degraeve R, Govoreanu B, Brunco DP, Roussel P, Houdt JV (2007) Microeletron Reability 47:525Google Scholar
  7. 7.
    Bhowmick S, Alan K (2008) J Appl Phys 104:124308CrossRefGoogle Scholar
  8. 8.
    Ogita Y, Kudoh T, Sakamoto F (2008) Thin Solid Films 516:832CrossRefGoogle Scholar
  9. 9.
    Nasution IA, Velesco A, Kim H (2009) J Cryst Growth 311:429CrossRefGoogle Scholar
  10. 10.
    Langereis E, Heil SBS, Knoops HCM, Keuning W, Van de Sanden MCM, Kessels WM (2009) J Phys D Appl Phys 42:073001CrossRefGoogle Scholar
  11. 11.
    Kang HK (2005) Surf Coat Technol 190:448CrossRefGoogle Scholar
  12. 12.
    Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca RatonGoogle Scholar
  13. 13.
    Hatch JE (ed) (1984) Aluminum properties and physical metallurgy. American Society for Metals, Novelty, OHGoogle Scholar
  14. 14.
    Yadav JB, Patil RB, Puri RK, Puri V (2007) Mater Sci Eng B 139:69CrossRefGoogle Scholar
  15. 15.
    Wang H, Liang J, Fand H, Xi B, Zhang M, Xiong G, Zhu Y, Qian Y (2008) J Solid State Chem 181:122CrossRefGoogle Scholar
  16. 16.
    Adamowics B, Izydorczyk W, Izydorczyk J, Klimasek A, Jakubik W, Zywicki J (2008) Vacuum 82:966CrossRefGoogle Scholar
  17. 17.
    Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Adv Mater 15:997CrossRefGoogle Scholar
  18. 18.
    Goebbert C, Aegerter MA, Burgard D, Nass R, Schmidt H (1999) J Mater Chem 9:253CrossRefGoogle Scholar
  19. 19.
    Terrier C, Chatelon JP, Roger JA (1997) Thin Solid Films 295:95CrossRefGoogle Scholar
  20. 20.
    Morais EA, Ribeiro SJL, Scalvi LVA, Santilli CV, Ruggiero LO, Pulcinelli SH, Messaddeq Y (2002) J Alloys Compd 344:217CrossRefGoogle Scholar
  21. 21.
    Morais EA, Scalvi LVA, Tabata A, De Oliveira JBB, Ribeiro SJL (2008) J Mater Sci 43:345. doi: CrossRefGoogle Scholar
  22. 22.
    Cuculescu E, Evtodiev I, Caraman M (2009) Thin Solid Films 517:2515CrossRefGoogle Scholar
  23. 23.
    Pineiz TF, Scalvi LVA, Saeki MJ, Morais EA (2010) J Electron Mater 39:1170CrossRefGoogle Scholar
  24. 24.
    Bagheri-Mohagheghi MM, Shokooh-Saremi M (2004) J Phys D Appl Phys 37:1248CrossRefGoogle Scholar
  25. 25.
    Paglia G, Buckley CE, Andrew L, Rohl AL, Hart RD, Winter K, Studer AJ, Hunter BA, Hanna JV (2004) Chem Mater 16:220CrossRefGoogle Scholar
  26. 26.
    Levin I, Gemming Th, Brandon DG (1998) Phys Status Solidi A 166:197CrossRefGoogle Scholar
  27. 27.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company, Reading, MAGoogle Scholar
  28. 28.
    Socrates G (2006) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Editora LTC, Rio de JaneiroGoogle Scholar
  29. 29.
    Shanthi E, Dutta V, Banerjee A, Chopra KL (1980) J Appl Phys 51:6243CrossRefGoogle Scholar
  30. 30.
    Bhardwaj A, Gupta BK, Raza A, Agnihotri OP (1981) Solar Cells 5:39CrossRefGoogle Scholar
  31. 31.
    Morais EA, Scalvi LVA (2007) J Eur Ceram Soc 27:3803CrossRefGoogle Scholar
  32. 32.
    Samson S, Fonstad CG (1973) J Appl Phys 44:4618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jorge L. B. MacielJr.
    • 1
  • Emerson A. Floriano
    • 1
  • Luis V. A. Scalvi
    • 2
    Email author
  • Leandro P. Ravaro
    • 1
  1. 1.Programa de Pós Graduação em Ciência e Tecnologia de Materiais, FCState University of São Paulo (UNESP)BauruBrazil
  2. 2.Physics Department, FCState University of São Paulo (UNESP)BauruBrazil

Personalised recommendations