Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6609–6617 | Cite as

Poly(methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis

  • D. Morselli
  • M. Messori
  • F. Bondioli
Article

Abstract

Poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) nanocomposites were prepared by means of in situ generation of TiO2 through a non-hydrolytic sol–gel process (NHSG), starting from titanium chloride, as titania precursor, benzyl alcohol, as oxygen donor, and commercial PMMA. TiO2 nanoparticles (average size of 30 nm) were obtained in the anatase and amorphous forms. The in situ generation led to a very homogeneous distribution of particulate fillers within the polymeric matrix avoiding the problems related to distributive and dispersive mixing of conventional compounding methods (top down approach). A slight increase of glass transition temperature was observed for all prepared composites with respect to the pristine PMMA. The NHSG process did not affect the molecular weight of the polymers indicating the absence of any degradation reaction for PMMA. The presence of titania in the anatase phase increases the photodegradation of the PMMA matrix due to UV irradiation.

Keywords

PMMA Grain Size Distribution Benzyl Alcohol Titania Nanoparticles Filler Concentration 

References

  1. 1.
    Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. WILEY-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Liu T, Burger C, Chu B (2003) Prog Polym Sci 28:5CrossRefGoogle Scholar
  3. 3.
    Kickelbick G (2003) Prog Polym Sci 28:83CrossRefGoogle Scholar
  4. 4.
    Schmidt G, Malwitz MM (2003) Curr Opin Coll Int Sci 8:103CrossRefGoogle Scholar
  5. 5.
    Hamming LM, Qiao R, Messersmith PB, Brinson LC (2009) Compos Sci Technol 69:1880CrossRefGoogle Scholar
  6. 6.
    Matsuyama K, Mishima K (2009) J Supercrit Fluids 49:256CrossRefGoogle Scholar
  7. 7.
    Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Polymer 50:3095CrossRefGoogle Scholar
  8. 8.
    Dzunuzovic E, Jeremic K, Nedeljkovic JM (2007) Eur Polym J 43:3719CrossRefGoogle Scholar
  9. 9.
    Convertino A, Leoa G, Tamborra M, Sciancalepore C, Striccoli M, Curri ML, Agostiano A (2007) Sens Actuators B 126:138–143CrossRefGoogle Scholar
  10. 10.
    Mittal V, Kim JK (2010) In: Advances in elastomeric nanocomposites. Springer, BerlinGoogle Scholar
  11. 11.
    Brinker C, Scherer G (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  12. 12.
    Wen J, Wilkes GL (1996) Chem Mater 8:1667CrossRefGoogle Scholar
  13. 13.
    Bourget L, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1998) J Non-Cryst Solids 242:81CrossRefGoogle Scholar
  14. 14.
    Niederberger M, Pinna N (2005) Prog Solid State Chem 33:59CrossRefGoogle Scholar
  15. 15.
    Pinna N, Antonietti M, Niederberger M (2004) Colloids Surf A Physicochem Eng Asp 250:211CrossRefGoogle Scholar
  16. 16.
    Pinna N, Neri G, Antonietti M, Niederberger M (2004) Angew Chem Int Ed 43:4345CrossRefGoogle Scholar
  17. 17.
    Pinna N, Garnweitner G, Antonietti M, Niederberger M (2004) Adv Mater 16:23CrossRefGoogle Scholar
  18. 18.
    Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) J Am Chem Soc 127:5608CrossRefGoogle Scholar
  19. 19.
    Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1997) Chem Mater 9:694CrossRefGoogle Scholar
  20. 20.
    Mutin PH, Vioux A (2009) Chem Mater 21:582CrossRefGoogle Scholar
  21. 21.
    Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) Chem Mater 4:961CrossRefGoogle Scholar
  22. 22.
    Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) J Mater Chem 2:673CrossRefGoogle Scholar
  23. 23.
    Corriu R, Leclercq D, Lefevre P, Mutin PH, Vioux A (1992) J Non-Cryst Solids 146:301CrossRefGoogle Scholar
  24. 24.
    Niederberger M, Bartl MH, Stucky GD (2002) Chem Mater 14:4364CrossRefGoogle Scholar
  25. 25.
    Niederberger M, Garnweitner G, Krumeich F, Nesper R, Cölfen H, Antonietti M (2004) Chem Mater 16:1202CrossRefGoogle Scholar
  26. 26.
    Zhu J, Yang J, Bian ZF, Ren J, Liu YM, Cao Y, Li HX, He HY, Fan KN (2007) Appl Catal B Environ 76:82CrossRefGoogle Scholar
  27. 27.
    Jia H, Zheng Z, Zhao H, Zhang L, Zou Z (2009) Mater Res Bull 44:1312CrossRefGoogle Scholar
  28. 28.
    Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR: 86-748Google Scholar
  29. 29.
    Toby BH (2001) J Appl Crystallogr 34:210CrossRefGoogle Scholar
  30. 30.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  31. 31.
    Kodera K (1962) Powders (Theory and Applications). Maruzen, TokyoGoogle Scholar
  32. 32.
    Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) Polym Eng Sci 48:448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dei Materiali e dell’AmbienteUniversità di Modena e Reggio EmiliaModena (I)Italy

Personalised recommendations