Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6563–6570 | Cite as

Electrical and tribological properties of a Ni–18%Ru alloy for contact applications

  • Y. Liu
  • B. S. Senturk
  • J. V. Mantese
  • M. Aindow
  • S. P. AlpayEmail author
Article

Abstract

A study of the microstructure, development of contact resistance during oxidation, and abrasive wear behavior for a Ni–18 at.%Ru alloy is presented in this article. It is shown that the alloy can be solutionized and aged, resulting in a fine lamellar mixture of FCC α-Ni and HCP β-Ru phases. Upon oxidation in air for 400 h, the measured contact resistance of the alloy is two orders of magnitude lower than that of pure Ni after 400-h oxidation. This behavior results from the formation of a low-resistivity rutile RuO2 scale on the β phase lamellae, which gives conducting pathways through the insulating NiO scale that forms on the α phase. After an initial run-in period, the steady-state abrasive wear rate measured for the Ni–Ru alloy is an order of magnitude less than that of pure Ni. Since the micro-cutting and flaking wear mechanisms are the same, the differences in the wear rates are ascribed to the presence of the well-dispersed hard Ru-rich β phase. The combination of a low-resistivity self-healing native oxide scale and good wear properties makes the alloy an excellent candidate for electrical contact applications.

Keywords

Contact Resistance Oxide Scale Abrasive Wear RuO2 Bulk Conductivity 

Notes

Acknowledgements

The authors gratefully acknowledge the support extended by the U. S. Army Research Office through Grant No. W-911-NF0710388.

References

  1. 1.
    Holm R (1967) Electric contacts: theory and applications. Springer-Verlag, BerlinCrossRefGoogle Scholar
  2. 2.
    Slade PG (ed) (1999) Electrical contacts: principles and applications. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Braunovic M, Myshkin NK, Konchits VV (2006) Electrical contacts: fundamentals, applications and technology. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. 4.
    Antler M (1985) Wear 106:5–33CrossRefGoogle Scholar
  5. 5.
    Beloufa A (2010) Tribol Int 43:2110–2119CrossRefGoogle Scholar
  6. 6.
    Kim K (2010) Wear 269:655–663CrossRefGoogle Scholar
  7. 7.
    Aindow M, Alpay SP, Liu Y, Mantese JV, Senturk BS (2010) Appl Phys Lett 97:152103CrossRefGoogle Scholar
  8. 8.
    Tsuda N, Nasu K, Fujimori A, Siratori K (2000) Electronic conduction in oxides, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  9. 9.
    Keith MG, James RC (1993) Phys Rev B 47:1732Google Scholar
  10. 10.
    Mattheiss LF (1976) Phys Rev B 13:2433CrossRefGoogle Scholar
  11. 11.
    Graebner JE, Greiner ES, Ryden WD (1976) Phys Rev B 13:2426CrossRefGoogle Scholar
  12. 12.
    Boshta M, Gad SA, El-Soud AMA, Mostafaa MZ (2009) J Ovonic Res 5:1–8Google Scholar
  13. 13.
    Jang WL, Lu YM, Hwang WS, Chen WC (2010) J Eur Ceram Soc 30:503–508CrossRefGoogle Scholar
  14. 14.
    Hakim A, Hossain J, Khan KA (2009) Renew Energ 34:2625–2629CrossRefGoogle Scholar
  15. 15.
    ASTM Standard B 667-97, Standard Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance, 1997Google Scholar
  16. 16.
    Tamai T (1989) Electron Commun Jpn Part 2. Electron 72:87–93Google Scholar
  17. 17.
    Zhu YF, Mimira K, Lim J, Isshiki M, Jiang Q (2006) Met Mater Trans A 37A:1231–1237Google Scholar
  18. 18.
    Veeka Kumari S, Natarajan M, Vaidyan VK (1992) J Mater Sci Lett 11:761–762CrossRefGoogle Scholar
  19. 19.
    Chang C, Wang C, Jin Y (2010) Wear 29:167–173CrossRefGoogle Scholar
  20. 20.
    Suh NP (1973) Wear 25:111–124CrossRefGoogle Scholar
  21. 21.
    Suh NP (1977) Wear 44:1–15CrossRefGoogle Scholar
  22. 22.
    Gui MC, Kang SB, Lee JM (2000) J Mater Sci 35:4749–4762CrossRefGoogle Scholar
  23. 23.
    Gialanella S, Ischia G, Straffelini G (2008) J Mater Sci 43:1701–1710CrossRefGoogle Scholar
  24. 24.
    Al-Qutub AM, Allam IM, Samad MAA (2008) J Mater Sci 43:5797–5803CrossRefGoogle Scholar
  25. 25.
    Kumari UR, Rao PP (2009) J Mater Sci 44:1082–1093CrossRefGoogle Scholar
  26. 26.
    Zhao YT, Wang SQ, Yang ZR, Wei MX (2010) J Mater Sci 45:227–232CrossRefGoogle Scholar
  27. 27.
    Savaskan T, Bican O, Alemdag Y (2009) J Mater Sci 44:1969–1976CrossRefGoogle Scholar
  28. 28.
    Srivastava VC, Rudrakshi GB, Uhlenwinkel V, Ojha SN (2009) J Mater Sci 44:2288–2299CrossRefGoogle Scholar
  29. 29.
    Yan SQ, Xie JP, Liu ZX, Li JW, Wang WY, Wang AQ (2009) J Mater Sci 44:4169–4173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Y. Liu
    • 1
  • B. S. Senturk
    • 1
  • J. V. Mantese
    • 2
  • M. Aindow
    • 1
  • S. P. Alpay
    • 1
    Email author
  1. 1.Department of Chemical Materials and Biomolecular Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.United Technologies Research CenterEast HartfordUSA

Personalised recommendations