Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6556–6562 | Cite as

Synthesis of a low-bandgap polymer bearing side groups containing phenoxy radicals

  • Yu Innami
  • Rafaёl H. L. Kiebooms
  • Tamotsu Koyano
  • Masaaki Ichinohe
  • Satoshi Ohkawa
  • Kohsuke Kawabata
  • Masataka Kawamatsu
  • Kiyoto Matsuishi
  • Hiromasa Goto
Article

Abstract

Poly(isothianaphthene methine) bearing di-tert-butylphenoxide in the side chain was prepared by reacting isothianaphthene and 3,5-di-tert-butyl-4-hydroxybenzaldehyde in the presence of POCl3. A reference polymer with no hydroxy group in the side chain was also synthesized. Both polymers are characterized by a low-bandgap with value of ca. 1.3 eV obtained by optical absorption spectroscopy, and ca. 1.7 eV estimated from an electrochemical method. After treatment with PbO2 as an oxidizer, phenoxy radicals were generated by oxidation in the polymer side groups. Optical absorption measurements and electron spin resonance (ESR) showed a characteristic signal due to phenoxy radicals. Magnetic properties of the polymer were examined with ESR and superconducting quantum interference device (SQUID) measurements. The results suggested that the polymer shows paramagnetic behavior.

Keywords

Electron Spin Resonance Cyclic Voltammetry Electron Spin Resonance Spectrum High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital 

Notes

Acknowledgements

We would like to thank the Chemical Analysis Division of Research Facility Center for Science and Technology, and the Glass Work Shop of the University of Tsukuba. We also thank Prof. Seiji Kojima (University of Tsukuba) for kindly providing Raman spectroscopy instrumentation.

References

  1. 1.
    Rojo G, Agulló-López F, Campo J, Cano M, Lagunas M, Heras J (2001) Synth Met 124:201CrossRefGoogle Scholar
  2. 2.
    Chen M, Perzon E, Robisson N, Jönsson S, Andersson M, Fahlman M, Berggren M (2004) Synth Met 146:233CrossRefGoogle Scholar
  3. 3.
    Shi C, Wu Y, Zeng W, Xie Y, Yang K, Cao Y (2005) Macromol Chem Phys 206:1114CrossRefGoogle Scholar
  4. 4.
    Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S (2008) J Am Chem Soc 130:1258CrossRefGoogle Scholar
  5. 5.
    Hou J, Park M, Zhang S, Yao Y, Chen L, Li J, Yang Y (2008) Macromolecules 41:6012CrossRefGoogle Scholar
  6. 6.
    Harpham M, Süzer Ö, Ma C, Bäuerle P, Goodson T (2009) J Am Chem Soc 131:973CrossRefGoogle Scholar
  7. 7.
    Amrutha SR, Jayakannan M (2009) J Phys Chem B 113:5083CrossRefGoogle Scholar
  8. 8.
    Kawabata K, Goto H (2010) Synth Met 160:2290CrossRefGoogle Scholar
  9. 9.
    Rogojanu A, Rusu E, Dorohoi DO (2010) Int J Polym Anal Charact 15:210CrossRefGoogle Scholar
  10. 10.
    Tarkuc S, Unver E, Udumb Y, Toppare L (2010) Eur Polym J 46:2199CrossRefGoogle Scholar
  11. 11.
    Kobayashi M, Colaneri N, Boysel M, Wudl F, Heeger A (1985) J Chem Phys 82:5717CrossRefGoogle Scholar
  12. 12.
    Quattrocchi C, Lazzaroni R, Brédas J, Kiebooms R, Vanderzande D, Gelan J, Meervelt L (1995) J Phys Chem 99:3932CrossRefGoogle Scholar
  13. 13.
    Kiebooms R, Adriaensens P, Vanderzande D, Gelan J (1997) J Org Chem 62:1473CrossRefGoogle Scholar
  14. 14.
    Meng H, Wudl F (2001) Macromolecules 34:1810CrossRefGoogle Scholar
  15. 15.
    Kiebooms R, Goto H, Akagi K (2001) Synth Met 119:117CrossRefGoogle Scholar
  16. 16.
    Kiebooms R, Goto H, Akagi K (2001) Macromolecules 34:7989CrossRefGoogle Scholar
  17. 17.
    Liu C, Oshima K, Shimomura M, Miyauchi S (2005) J Appl Polym Sci 97:1848CrossRefGoogle Scholar
  18. 18.
    Kim J, Qin Y, Stevens D, Kalihari V, Hillmyer M, Frisbie C (2009) J Phys Chem C 113:21928CrossRefGoogle Scholar
  19. 19.
    Yamamoto T, Usui M, Ootsuka H, Iijima T, Fukumoto H, Sakai Y, Aramaki S, Yamamoto H, Yagi T, Tajima H, Okada T, Fukuda T, Emoto A, Ushijima H, Hasegawa M, Ohtsu H (2010) Macromol Chem Phys 211:2138CrossRefGoogle Scholar
  20. 20.
    Xie C, Lahti P (1999) J Polym Sci A 37:779CrossRefGoogle Scholar
  21. 21.
    Rajca A, Wongsriratanakul J, Rajca S, Cerny R (2004) Chem Eur J 10:3144CrossRefGoogle Scholar
  22. 22.
    Vandeleene S, Jivanescu M, Stesmans A, Cuppens J, Bael M, Yamada H, Sato N, Verbiest T, Koeckelberghs G (2010) Macromolecules 43:2910CrossRefGoogle Scholar
  23. 23.
    Goto H (2008) Polymer 49:3619CrossRefGoogle Scholar
  24. 24.
    Kaneko T, Abe H, Namikoshi T, Marwanta E, Teraguchi M, Aoki T (2009) Synth Met 159:864CrossRefGoogle Scholar
  25. 25.
    Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns E (2007) J Power Sources 163:1110CrossRefGoogle Scholar
  26. 26.
    Ikeda H (2008) J Photopolym Sci Technol 21:327CrossRefGoogle Scholar
  27. 27.
    Okuda Y, Lakshmikantham M, Cava M (1991) J Org Chem 56:6024CrossRefGoogle Scholar
  28. 28.
    Goto H, Koyano T, Ikeda H, Yoshizaki R, Akagi K (2004) Polymer 45:4559CrossRefGoogle Scholar
  29. 29.
    Faulques E, Wallnöfer W, Kuzmany H (1989) J Chem Phys 90:7585CrossRefGoogle Scholar
  30. 30.
    Zerbi G, Magnoni MC, Hoogmartens I, Kiebooms R, Carleer R, Vanderzande D, Gelan J (1995) Adv Mater 7:1027CrossRefGoogle Scholar
  31. 31.
    Neugebauer H, Kvarnström C, Brabec C, Sariciftci NS, Kiebooms R, Wudl F, Luzzati S (1999) J Chem Phys 110:12108CrossRefGoogle Scholar
  32. 32.
    Yoshioka N, Nishide H, Tsuchida E (1990) Mol Cryst Liq Cryst 190:45Google Scholar
  33. 33.
    Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger A (1999) Synth Met 99:243CrossRefGoogle Scholar
  34. 34.
    Bonardi L, Kanaan H, Camerel F, Jolinat P, Retailleau P, Ziessel R (2008) Adv Funct Mater 18:401CrossRefGoogle Scholar
  35. 35.
    Scharber M, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A, Brabec C (2006) Adv Mater 18:789CrossRefGoogle Scholar
  36. 36.
    Nishide H, Doi R, Oyaizu K, Tsuchida E (2001) J Org Chem 66:1680CrossRefGoogle Scholar
  37. 37.
    Chen W, Bowmaker G, Cooney R (2002) Phys Chem Chem Phys 4:4218CrossRefGoogle Scholar
  38. 38.
    Yoshizawa K, Tanaka K, Yamabe T (1992) J Chem Phys 96:5516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yu Innami
    • 1
  • Rafaёl H. L. Kiebooms
    • 2
  • Tamotsu Koyano
    • 1
    • 3
  • Masaaki Ichinohe
    • 4
  • Satoshi Ohkawa
    • 1
  • Kohsuke Kawabata
    • 1
  • Masataka Kawamatsu
    • 1
  • Kiyoto Matsuishi
    • 1
  • Hiromasa Goto
    • 1
  1. 1.Institute of Materials Science, Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  2. 2.European Patent OfficeMunichGermany
  3. 3.Cryogenic CenterUniversity of TsukubaTsukubaJapan
  4. 4.Department of Chemistry, Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations