Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6508–6517 | Cite as

Effect of organoclay with various organic modifiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/organoclay nanocomposites

  • Dekun Sheng
  • Juanjuan Tan
  • Xiangdong Liu
  • Pixin Wang
  • Yuming YangEmail author
Article

Abstract

Thermoplastic polyurethane (TPU)/organoclay nanocomposites are prepared through a melt extrusion process. The TPU is combined with four differently modified organoclays, namely, I.28E, I.30P, I.34TCN, and I.44P. Wide-angle X-ray diffraction and transmission electron microscopy results show that the addition of I.34TCN and I.30P to TPU/organoclay nanocomposites results in the nearly exfoliated structures of the nanocomposites. Addition of I.28E leads to partially intercalated nanocomposites, whereas I.44P cannot disperse effectively in the nanocomposites. Organoclay can enhance the mechanical and gas barrier properties of TPU. The enhancement follows the order TPU/I.34TCN ≥ TPU/I.30P > TPU/I.28E > TPU/I.44P, which is consistent with the degree of dispersion and exfoliation of silicate layers. In addition, Fourier transform infrared absorption spectra show that more hydrogen bonding sites are introduced between the clay modifiers and TPU chains in the TPU/I.34TCN and TPU/I.30P nanocomposites; this has a positive impact on the dispersion of the organoclay and, consequently, the mechanical and gas barrier properties of the nanocomposites.

Keywords

Silicate Layer Organic Modifier Thermoplastic Polyurethane Clay Loading Strong Interfacial Interaction 

References

  1. 1.
    Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Macromolecules 30:6333CrossRefGoogle Scholar
  2. 2.
    Usuki A, Kojima Y, Kawasumi M et al (1993) J Mater Res 8:1179CrossRefGoogle Scholar
  3. 3.
    Zhong Y, Zhu ZY, Wang SQ (2005) Polymer 46:3006. doi: https://doi.org/10.1016/j.polymer.2005.02.014 CrossRefGoogle Scholar
  4. 4.
    Chang JH, An YU, Sur GS (2003) J Polym Sci B Polym Phys 41:94. doi: https://doi.org/10.1002/polb.10349 CrossRefGoogle Scholar
  5. 5.
    Jeong HM, Kim BC, Kim EH (2005) J Mater Sci 40:3783. doi: https://doi.org/10.1007/s10853-005-3719-4 CrossRefGoogle Scholar
  6. 6.
    Zhang YD, Liu QF, Zhang QA, Lu YP (2010) Appl Clay Sci 50:255. doi: https://doi.org/10.1016/j.clay.2010.08.006 CrossRefGoogle Scholar
  7. 7.
    Oral A, Tasdelen MA, Demirel AL, Yagci Y (2009) Polymer 50:3905. doi: https://doi.org/10.1016/j.polymer.2009.06.020 CrossRefGoogle Scholar
  8. 8.
    Ramazani SAA, Tavakolzadeh F, Baniasadi H (2010) J Appl Polym Sci 115:308. doi: https://doi.org/10.1002/app.31102 CrossRefGoogle Scholar
  9. 9.
    Ren CY, Jiang ZY, Du XH, Men YF, Tang T (2009) J Phys Chem B 113:14118. doi: https://doi.org/10.1021/jp9063164 CrossRefGoogle Scholar
  10. 10.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539. doi: https://doi.org/10.1016/j.progpolymsci.2003.08.002 CrossRefGoogle Scholar
  11. 11.
    Zha WB, Han CD, Han SH et al (2009) Polymer 50:2411. doi: https://doi.org/10.1016/j.polymer.2009.03.018 CrossRefGoogle Scholar
  12. 12.
    Yang M, Wang P, Huang CY, Ku MS, Liu HJ, Gogos C (2010) Int J Pharm 395:53. doi: https://doi.org/10.1016/j.ijpharm.2010.04.033 CrossRefGoogle Scholar
  13. 13.
    Simons R, Qiao GG, Powell CE, Bateman SA (2010) Langmuir 26:9023. doi: https://doi.org/10.1021/la904827d CrossRefGoogle Scholar
  14. 14.
    Tian Y, Yu H, Wu SS, Ji GD (2004) J Mater Sci 39:4301. doi: https://doi.org/10.1023/B:JMSC.0000033412.92494.ee CrossRefGoogle Scholar
  15. 15.
    Lakshminarayanan S, Lin B, Gelves GA, Sundararaj U (2009) J Appl Polym Sci 112:3597. doi: https://doi.org/10.1002/app.29679 CrossRefGoogle Scholar
  16. 16.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728CrossRefGoogle Scholar
  17. 17.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  18. 18.
    Wang Z, Pinnavaia TJ (1998) Chem Mater 10:3769CrossRefGoogle Scholar
  19. 19.
    Tien YI, Wei KH (2001) Macromolecules 34:9045. doi: https://doi.org/10.1021/ma010551p CrossRefGoogle Scholar
  20. 20.
    Cai YB, Hu Y, Song L et al (2007) J Mater Sci 42:5785. doi: https://doi.org/10.1007/s10853-006-0634-2 CrossRefGoogle Scholar
  21. 21.
    Pegoretti A, Dorigato A, Brugnara M, Penati A (2008) Eur Polym J 44:1662. doi: https://doi.org/10.1016/j.eurpolymj.2008.04.011 CrossRefGoogle Scholar
  22. 22.
    Dan CH, Kim YD, Lee MH, Min BH, Kim JH (2008) J Appl Polym Sci 108:2128. doi: https://doi.org/10.1002/app.27879 CrossRefGoogle Scholar
  23. 23.
    Dan CH, Lee MH, Kim YD, Min BH, Kim JH (2006) Polymer 47:6718. doi: https://doi.org/10.1016/j.polymer.2006.07.052 CrossRefGoogle Scholar
  24. 24.
    Cipriano BH, Kota AK, Gershon AL et al (2008) Polymer 49:4846. doi: https://doi.org/10.1016/j.polymer.2008.08.057 CrossRefGoogle Scholar
  25. 25.
    Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) Polymer 48:966. doi: https://doi.org/10.1016/j.polymer.2006.12.044 CrossRefGoogle Scholar
  26. 26.
    Lee MH, Dan CH, Kim JH et al (2006) Polymer 47:4359. doi: https://doi.org/10.1016/j.polymer.2006.04.003 CrossRefGoogle Scholar
  27. 27.
    Jia QM, Zheng M, Zhu YC, Li JB, Xu CZ (2007) Eur Polym J 43:35. doi: https://doi.org/10.1016/j.eurpolymj.2006.10.016 CrossRefGoogle Scholar
  28. 28.
    Balazs AC, Singh C, Zhulina E (1998) Macromolecules 31:8370CrossRefGoogle Scholar
  29. 29.
    Lyatskaya Y, Balazs AC (1998) Macromolecules 31:6676CrossRefGoogle Scholar
  30. 30.
    Worzakowska M (2009) J Mater Sci 44:4069. doi: https://doi.org/10.1007/s10853-009-3587-4 CrossRefGoogle Scholar
  31. 31.
    Meng XY, Wang Z, Zhao ZF, Du XH, WG Bi, Tang T (2007) Polymer 48:2508. doi: https://doi.org/10.1016/j.polymer.2007.03.009 CrossRefGoogle Scholar
  32. 32.
    Nielsen LE (1967) J Macromol Sci Chem A1:929CrossRefGoogle Scholar
  33. 33.
    Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573CrossRefGoogle Scholar
  34. 34.
    Chen BQ, Evans JRG (2006) Macromolecules 39:747. doi: https://doi.org/10.1021/ma052154a CrossRefGoogle Scholar
  35. 35.
    Chang JH, An YU, Cho DH, Giannelis EP (2003) Polymer 44:3715. doi: https://doi.org/10.1016/s0032-3861(03)00276-3 CrossRefGoogle Scholar
  36. 36.
    Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Macromolecules 36:9851. doi: https://doi.org/10.1021/ma035077x CrossRefGoogle Scholar
  37. 37.
    Pattanayak A, Jana SC (2005) Polymer 46:5183. doi: https://doi.org/10.1016/j.polymer.2005.04.035 CrossRefGoogle Scholar
  38. 38.
    Pattanayak A, Jana SC (2005) Polymer 46:3275. doi: https://doi.org/10.1016/j.polymer.2005.02.081 CrossRefGoogle Scholar
  39. 39.
    Kim W, Chung DW, Kim JH (2008) J Appl Polym Sci 110:3209. doi: https://doi.org/10.1002/app.28929 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dekun Sheng
    • 1
    • 2
  • Juanjuan Tan
    • 1
    • 2
  • Xiangdong Liu
    • 1
    • 2
  • Pixin Wang
    • 1
  • Yuming Yang
    • 1
    Email author
  1. 1.Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations