Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6500–6507 | Cite as

Synthesis and properties of LaNi1−xFexO3−δ as cathode materials in SOFC

  • Nipaka Sukpirom
  • Sirinoot Iamsaard
  • Sumittra Charojrochkul
  • Jinda YeyongchaiwatEmail author
Article

Abstract

The synthesis of LaNi1xFexO3δ (LNF) perovskites with x = 0.0–1.0, for use as cathode materials for an IT-SOFC, was investigated using four combustion methods, Water Citrate (WC), Modified Water Citrate (MWC), Nitric Citrate (NC), and Modified Nitric Citrate (MNC). The structures and homogeneities of the synthesized powders were examined using an XRD, and the particle sizes were examined using an SEM and a particle size analyzer. All four combustion methods gave the single phase perovskites with the same structure. The main difference was shown in a particle size that the smallest to the largest sizes were obtained from MNC, MWC, NC, and WC, respectively. In this LNF series, as x is 0–0.5, the crystal structure is cubic and rhombohedral at the calcination temperature of 700 and 900 °C, respectively. Further investigation indicated that the cubic structure changed to rhombohedral structure at 900 °C, and was stable up to 1200 °C. As x is 0.6–1.0, the crystal structure is in orthorhombic phase when calcined between 700 and 1000 °C. This orthorhombic phase decomposed above 1100 °C. From the XRD and SEM–EDX results, LaNi0.6Fe0.4O3−δ (LNF64) has a good chemical compatibility with 8YSZ from room temperature up to 900 °C. In addition, its thermal expansion coefficient is 13.2 × 10−6 K−1 close to that of 8 mol% Y2O3 (8YSZ). Therefore, LNF64 also has a good physical compatibility with 8YSZ.

Keywords

Perovskite Thermal Expansion Coefficient LaFeO3 Chemical Compatibility Triple Phase Boundary 

Notes

Acknowledgement

The authors thank to Thailand Research fund (TRF) for the financial support under contract MRG4880167.

References

  1. 1.
    Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 124:281CrossRefGoogle Scholar
  2. 2.
    Basu RN, Tietz F, Teller O, Wessel E, Buchkremer HP, Stöver D (2003) J Solid State Electrochem 7:416CrossRefGoogle Scholar
  3. 3.
    Bevilacqua M, Montini T, Tavagnacco C, Vicario G, Fornasiero P (2006) Solid State Ionics 177:2957CrossRefGoogle Scholar
  4. 4.
    Rapagna S, Provendier H, Petit C, Kienemann A, Foscolo PU (2002) Biomass Bioenergy 22:377CrossRefGoogle Scholar
  5. 5.
    Provendier H, Petit C, Kiennemann A (2001) Surf Chem Catal 4:57Google Scholar
  6. 6.
    Provendier H, Petit C, Estournes C, Libs S, Kiennemann A (1999) Appl Catal A 180:163CrossRefGoogle Scholar
  7. 7.
    Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN (1999) Mater Res Bull 34:1311CrossRefGoogle Scholar
  8. 8.
    Zhen YD, Tok AIY, Jiang SP, Boey FYC (2007) J Power Sources 170:61CrossRefGoogle Scholar
  9. 9.
    Proskurnina NV, Voronin VI, Cherepanov VA, Kiselev EA (2007) Prog Solid State Chem 35:233CrossRefGoogle Scholar
  10. 10.
    Basu RN, Tietz F, Wessel E, Buchkremer HP, Stover D (2004) Mater Res Bull 39:1335CrossRefGoogle Scholar
  11. 11.
    Śierczek K, Marzec J, Palubiak D, Zajac W, Molenda J (2006) Solid State Ionics 177:1811CrossRefGoogle Scholar
  12. 12.
    Tantayanon S, Yeyongchaiwat J, Lou J, Ma YH (2003) Sep Purif Technol 32:319CrossRefGoogle Scholar
  13. 13.
    Yeyongchaiwat J, Tantayanon S, Lou J, Ma YH (2004) J Mater Sci 39:7067. doi: https://doi.org/10.1023/B:JMSC.0000047552.07608.3b CrossRefGoogle Scholar
  14. 14.
    Bontempi E, Garzella C, Valetti S, Depero LE (2003) J Eur Ceram Soc 23:2135CrossRefGoogle Scholar
  15. 15.
    Orui H, Watanabe K, Chiba R, Arakawa M (2004) J Electrochem Soc 151:A1412CrossRefGoogle Scholar
  16. 16.
    Basu RN, Tietz F, Wessel E, Stover D (2004) J Mater Proc Technol 147:85CrossRefGoogle Scholar
  17. 17.
    Simner SP, Shelton JP, Anderson MD, Stevenson JW (2003) Solid State Ionics 161:11CrossRefGoogle Scholar
  18. 18.
    Falcon H, Goeta AE, Punte G, Carbonio RE (1997) J Solid State Chem 133:379CrossRefGoogle Scholar
  19. 19.
    Anderson MD, Stevenson JW, Simner SP (2004) J Power Sources 129:188CrossRefGoogle Scholar
  20. 20.
    Daroukh MA, Vashook VV, Ullmann H, Tietz F, Raj IA (2003) Solid State Ionics 158:141CrossRefGoogle Scholar
  21. 21.
    Dinga X, Liua Y, Gaoa L, Guo L (2006) J Alloys Compd 425:318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nipaka Sukpirom
    • 1
  • Sirinoot Iamsaard
    • 1
  • Sumittra Charojrochkul
    • 2
  • Jinda Yeyongchaiwat
    • 3
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.National Metal and Materials Technology CenterPathumthaniThailand
  3. 3.Department of Science, Faculty of Science and TechnologyBansomdejchaopraya Rajabhat UniversityBangkokThailand

Personalised recommendations