Journal of Materials Science

, Volume 46, Issue 20, pp 6484–6490 | Cite as

Corrosion behavior of Cu–SiO2 nanocomposite coatings obtained by electrodeposition in the presence of cetyl trimethyl ammonium bromide

  • Ionut Zamblau
  • Simona Varvara
  • Liana Maria MuresanEmail author


Copper silica composite coatings are an attractive alternative to chromium and nickel coatings in order to avoid environmental problems and for application in electrical devices. However, co-deposition of SiO2 particles with metals occurs to a rather limited extent, generally under 1%, due to the hydrophilicity of SiO2, which makes the incorporation of particles in a metallic matrix difficult. To overcome this drawback, the influence of cetyl trimethyl ammonium bromide (CTAB) on the deposition and corrosion behavior of Cu–SiO2 coatings on steel has been studied. It was established that CTAB plays a beneficial role in SiO2 suspension stabilization, promotes the co-deposition of nanoparticles in the copper matrix and improves the deposit morphology and structure. Consequently, a higher corrosion resistance of Cu–SiO2 deposits obtained in the presence of CTAB was noticed. The most important effect was observed in the case when CTAB was used in concentration of 10−3 M in the electroplating bath.


Silica Nanoparticles Corrosion Behavior Cationic Surfactant Cetyl Trimethyl Ammonium Bromide Cetyl Trimethyl Amonium Bromide 



The authors thank Mr. Florin Popa, from Technical University Cluj-Napoca, for the SEM-EDX analyses and Prof. Claudine Filiâtre (Université Franche Comté, Institut UTINAM, Besançon, France) for the guidance of I. Zamblau during zeta potential measurements.


  1. 1.
    Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Technol 201:371CrossRefGoogle Scholar
  2. 2.
    Fransaer JP, Leunis E, Hirato T, Celis JP (2002) J Appl Electrochem 32:123CrossRefGoogle Scholar
  3. 3.
    Wang SC, Wei WCJ (2003) Mater Chem Phys 78:574CrossRefGoogle Scholar
  4. 4.
    Fransaer J, Celis JP, Roos JR (1992) J Electrochem Soc 139:413CrossRefGoogle Scholar
  5. 5.
    Bund A, Thiemig D (2007) J Appl Electrochem 37:345CrossRefGoogle Scholar
  6. 6.
    Chen YC, Ger MD, Hwu WH, Kuo SL, Hou KH (2002) J Chin Colloid Interface Soc 24:89Google Scholar
  7. 7.
    Helle K, Walsh F (1997) Trans Inst Met Finish 75:53CrossRefGoogle Scholar
  8. 8.
    Terzieva V, Fransaer J, Celis JP (2000) J Electrochem Soc 147:198CrossRefGoogle Scholar
  9. 9.
    Ramasubramanian M, Popova SN, Popov BN, White RE, Yin KM (1996) J Electrochem Soc 143:2164CrossRefGoogle Scholar
  10. 10.
    Bryleva EY, Vodolazkaya NA, Mchedlov-Petrossyan NO, Samokhina LV, Matveevskaya NA, Tolmachev AV (2007) J Colloid Interface Sci 316:712CrossRefGoogle Scholar
  11. 11.
    Fransaer J, Celis JP (2001) Galvanotechnik 92:1544Google Scholar
  12. 12.
    Tuaweri TJ, Wilcox GD (2006) Surf Coat Technol 200:5921CrossRefGoogle Scholar
  13. 13.
    Maa XK, Leea NH, Oha HJ, Kimb JW, Rheeb CK, Parka KS, Kim SJ (2010) Coll Surf A Physicochem Eng Aspects 358:172CrossRefGoogle Scholar
  14. 14.
    Fustes J, Gomes A, da Silva Pereira MI (2008) J Solid State Electrochem 12:1435CrossRefGoogle Scholar
  15. 15.
    Stern M, Geary AL (1957) J Electrochem Soc 104:56CrossRefGoogle Scholar
  16. 16.
    Praveen BM, Venkatesha TV (2008) Appl Surf Sci 254:2418CrossRefGoogle Scholar
  17. 17.
    Trachli B, Keddam M, Shriri A, Takenouti H (2002) Corros Sci 44:997CrossRefGoogle Scholar
  18. 18.
    Youssef KMS, Koch CC, Fedkiw PS (2004) Corros Sci 46:51CrossRefGoogle Scholar
  19. 19.
    Szczygieł B, Kołodziej M (2005) Electrochim Acta 50:4188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ionut Zamblau
    • 1
  • Simona Varvara
    • 2
  • Liana Maria Muresan
    • 1
    Email author
  1. 1.Department of Physical Chemistry“Babes-Bolyai” UniversityCluj-NapocaRomania
  2. 2.Department of Topography“1 Decembrie 1918” UniversityAlba-IuliaRomania

Personalised recommendations